Date

Name Group

Instructions for the practical lesson on biochemistry

Topic: Calcium, phosphorus, sodium, metabolism of bone tissue

Task 1: Estimation of total calcium in serum and urine

Reagents:

Commercial kit Bio-La-Test CALCIUM Liquid 250, made by Erba-Lachema s.r.o.

- 1. Working solution: MES buffer pH 6.5 100 mmol/l, arsenazo III 200 µmol/l
- 2. Standard solution of calcium 2.5 mmol/l
- 3. Serum unknown sample (infectious material)
- 4. Urine unknown sample (infectious material) diluted 4×

Procedure:

N.B.: Ultrapure deionized water must be used for this experiment both for the blank and for rinsing the cuvettes in between measurements.

Measure reagents to **plastic (!) single-use test tubes** according to the following table:

Measure in ml:	Serum sample (Tube No. 1)	Urine sample (Tube No. 2)	Standard (Tube No. 3)	Blank (Tube No. 4)
Working solution	1.0	1.0	1.0	1.0
Serum	0.01	-	-	-
Urine	-	0.01	-	-
Standard solution	-	-	0.01	-
Ultrapure water	-	-	-	0.01

Mix and incubate 1 minute at 37 °C. Measure the absorbances of serum, urine and standard against the blank at 650 nm in new 1 cm plastic cuvette. The coloration is stable for one hour.

Calculations:

Concentration of total calcium in the serum (S-Ca):

Aserum S-Calcium (mmol/l) = \cdot \times c_{standard} Astandard

Concentration of calcium in the urine (U-Calcium):

 A_{urine} U- Calcium (mmol/l) = - \times c_{standard} \times Dilution of urine Astandard

Daily output of calcium into urine (dU-Calcium):

dU-Calcium (mmol/24 hrs) = U-Calcium (mmol/l) × Volume of urine (liters/24 hrs)

Task 2: Estimation of inorganic phosphate in serum and urine

Reagents:

Commercial kit Bio-La-Test PHOSPHORUS UV Liquid 250, made by Erba-Lachema s.r.o.

- 1. Working solution: Sulfuric acid 210 mmol/l, ammonium molybdate 650 mmol/l
- 1. Standard solution of phosphate 1.61 mmol/l
- 2. Serum unknown sample (infectious material)
- 3. Urine unknown sample (infectious material) diluted 25×

Procedure:

N.B.: Ultrapure deionized water must be used for this experiment both for the blank and for rinsing the cuvettes in between measurements.

Measure reagents to **plastic (!) single-use test tubes** according to the following table:

Measure in ml:	Serum sample (Tube No. 1)	Urine sample (Tube No. 2)	Standard (Tube No. 3)	Blank (Tube No. 4)
Working solution	1.0	1.0	1.0	1.0
Serum	0.01	-	-	-
Urine (diluted)	-	0.01	-	-
Standard solution	-	-	0.01	-
Ultrapure water	-	-	-	0.01

Mix and incubate 5 minutes at 37 °C. Measure the absorbances of serum, urine and standard against the blank at 340 nm in <u>new</u> 1 cm plastic cuvette. The coloration is stable for one hour.

Calculations:

Concentration of inorganic phosphate in serum (fS-P inorg.):

A _{serum}		
<u> </u>	×	Cstandard
$A_{standard}$		
		×

Concentration of inorganic phosphate in urine (U-P inorg.):

A _{urine}			
U- Inorganic phosphate (mmol/l) =	×	$c_{standard}$ ×	Dilution of urine
Astandard			

Daily output of inorganic phosphate into urine (dU-P):

dU-Inorg. phosphate (mmol/24 hrs) = U-Inorg. phosphate (mmol/l) \times Volume of urine (liters/24 hrs)

Task 3: Estimation of catalytic concentration of alkaline phosphatase and its isoforms

Reagents:

Commercial kit Bio-La-Test Alkalická fosfatáza 120 manufactured by Erba-Lachema s.r.o.. is used.

- 1. Buffer: N-methyl-D-glucamine pH 10.1, 0.35 mol/l, NaCl 70.0 mmol/l, MgCl₂ 0.5 mmol/l
- 2. **Substrate:** 4-nitrophenyl phosphate disodium salt 15 mmol/l in the buffer described above (Concentrations in the final reaction mixture)
- 3. Inhibitor: Sodium hydroxide 1 mol/l, Chelaton 3 30 mmol/l
- 4. Serum unknown sample (infectious material)

Procedure:

Two serum aliquots are prepared for this experiment: 'S' (native) and 'T'(subjected to heat inactivation at 56 °C for 10 minutes).

Proceed according to the table:

Measure in ml:	Native serum sample (S1)	Control for native sample (S2)	Heat-inactivated sample (T1)	Control for heat- inactivated (T2)
Buffer	1.0	1.0	1.0	1.0
Native serum (S)	0.02	-	-	-
Heat-inactivated serum (T)	-	-	0.02	-
	Mix and incub	ate 5 minutes at 3	7 °C	
Substrate	0.2	0.2	0.2	0.2
Ν	Iix and incubate e	xactly 10 minutes	at 37 °C	
Inhibitor	0.5	0.5	0.5	0.5
Native serum (S)	-	0.02	-	-
Heat-inactivated serum (T)	-	-	-	0.02
Mix and within 30 minutes me	asure the absorba	nces of $S1$ S2 T1	and T2 against de	ionized water at

Mix and within 30 minutes measure the absorbances of S1, S2, T1, and T2 against deionized water at 420 nm in 1 cm cuvette.

Calculations:

Subtraction of control absorbances:

 $\Delta A_{S} = A_{S1} - A_{S2} \qquad \qquad \Delta A_{T} = A_{T1} - A_{T2}$

Total catalytic concentration of ALP:

Calculation is based on the molar absorption coefficient of 4-nitrophenol.

Total ALP (μ kat/l) = $\Delta A_s \times 10.263$

Catalytic concentration of the liver isoenzyme:

Calculation assumes that 100 % of the bone and one third of the liver isoenzyme have been inactivated by heat.

Liver isoenzyme ALP (μ kat/l) = 1.5 × Δ A_T × 10.263

Catalytic concentration of the bone isoenzyme:

Bone isoenzyme ALP (μ kat/l) = Total ALP (μ kat/l) – Liver isoenzyme ALP (μ kat/l)

Task 4 Solubility of various calcium salts

Reagents:

- 1. Calcium chloride, CaCl₂, solid substance
- 2. Calcium carbonate, CaCO₃, solid substance
- 3. Calcium phosphate, Ca₂(PO₄)₃, solid substance
- 4. Ammonium oxalate, (NH₄)₂(COO)₂, saturated solution
- on 😲
- 5. Hydrochloric acid, HCl, diluted
- 6. Sodium hydrogen carbonate, NaHCO₃, 10 g/l
- 7. Na₂EDTA, saturated solution
- 8. Lactose, 10 g/l

A. Solubility of calcium salts in water and HCl

Procedure:

- a. Take four short glass test tubes and pour a pinch of solid calcium chloride (tube No. 1), calcium carbonate (tube No. 2) or calcium phosphate (tubes No. 3 and 4).
- b. Add about 1.5 ml of deionized water to each tube.
- c. Mix and observe whether the different calcium salts dissolve in water.
- d. To the tubes No. 2, 3, and 4 try to add diluted hydrochloric acid drop wise until the precipitate just dissolves; record the number of drops to the table in your report.
- e. Next, to the tube No. 3 containing dissolved $Ca_3(PO_4)_2$ add sodium hydrogen carbonate solution drop wise and observe formation of a precipitate.
- f. To the tube No. 4 add about 8 drops of saturated Na₂EDTA solution followed by the sodium hydrogen carbonate solution (the same number of drops as to the tube No. 3). Na₂EDTA prevents precipitation.
- g. Summarize all your observations to the table in your report.

B. Influence of some food components on solubility of calcium salts

Procedure:

Prepare two mixtures according to the table and observe whether a precipitate of calcium salt results.

	Tube No. 1	Tube No. 2
CaCl ₂	1 measure	1 measure
Deionized water	1 ml	1 ml
Ammonium oxalate	cca 5 drops	-
Lactose	-	cca 5 drops

Task 5 Quantitative estimation of Na⁺ in urine

Reagents:

- 1. Dilution buffer: 1.98 g of acetic acid 100 % and 4.09 g of ethanolamine in 1,000 ml, pH alkaline.
- 2. Standard NaCl solutions 0.1 mol/l, 0.01 mol/l, and 0.001 mol/l in the dilution buffer.
- 3. Urine sample of unknown Na⁺ concentration, diluted 10× with the dilution buffer.

Procedure:

- a. Dilute the urine sample $10 \times$ with the buffer: mix 5 ml of sample with 45 ml of buffer.
- b. Follow the provided instructions for use of pH-meter as a mV-meter and measure the electrode potentials in the calibration solutions of NaCl 1 3 as well as in the diluted urine sample. Do not rinse the electrode with distilled water in between measurements; wipe it gently (avoid rubbing!) instead. Record all measured values of E (mV) into table in your report.
- c. Create a calibration graph from the measured values of the electrode potentials and the corresponding pNa values of the standard solutions. Plot the pNa values on the x axis and the potential in mV on the y axis. Next, use the calibration graph to read the pNa for the analyzed urine sample.
- d. Convert the pNa value of diluted urine sample into Na⁺ concentration:

pNa = -log[Na⁺] [Na⁺]diluted urine = 10^{-pNa}

e. Correct for dilution of urine:

 $U-Na^+ = 10 \times [Na^+]$ diluted urine

Further calculations:

Daily output of Na⁺ *into urine:*

dU- Na⁺ = U-Na⁺ (mol/l) × Vol. urine (liters/24 hrs)

Fractional excretion (FE) of Na⁺:

 $FE_{Na} = \frac{U_{Na} \times P_{Cr}}{U_{Cr} \times P_{Na}}$

- U_{Cr} Creatinine in urine (mmol/l)
- P_{Cr} Creatinine in serum (mmol/l)
- U_{Na} Sodium in urine (mmol/l)
- P_{Na} Sodium in serum (mmol/l)

Tubular resorption (TR) of Na⁺:

 $TR_{Na} = 1 - FE_{Na}$