| Date Name | | | Group | | | | |--|---------------------------|-----------------------------|-----------------------|-----------------------|--|--| | Lab report from the practical lesson on biochemistry | | | | | | | | торіс: Calcium, phosph | orus, sodium, | metabolism o | of bone tissue | ! | | | | Task 1: Estimation of Principle: | of total calci | um in serun | n and urine | Results: | | | | | | | | | Serum sample (Tube No. 1) | Urine sample (Tube No. 2) | Standard (Tube No. 3) | Blank
(Tube No. 4) | | | | A 650 nm | | | | - | | | | Calculations: | | | | | | | | Concentration of total calciu | m in the serum (S | S-Ca): | | | | | | S-Calcium (mmol/l) = — | A _{serum} | × C _{standard} | | | | | | | $A_{standard}$ | Standard | | | | | | S-Calcium (mmol/l) = | | × = | | | | | | | | | | | | | | Concentration of calcium in | the urine (U-Calc | cium): | | | | | | U- Calcium (mmol/l) =— | A _{urine} × | $c_{standard} \times Dilut$ | ion of urine | | | | | | $A_{ ext{standard}}$ | | | | | | | | | | | | | | | U- Calcium (mmol/l) = —— | × | × | = | | | | | Daily output | of | calcium | into | urine | (dU- | Calcium): | |--------------|----|---------|------|-------|------|-----------| |--------------|----|---------|------|-------|------|-----------| | dU-Calcium (mmol/24 hrs) = U-Calcium (mmol/l) × | Volume of urine (liters/24 hrs) | |---|---------------------------------| | dU-Calcium (mmol/24 hrs) = × | = | #### **Conclusion:** # Task 2: Estimation of inorganic phosphate in serum and urine **Principle**: #### **Results:** | | Serum sample (Tube No. 1) | Urine sample (Tube No. 2) | Standard
(Tube No. 3) | Blank
(Tube No. 4) | |----------|---------------------------|---------------------------|--------------------------|-----------------------| | A 340 nm | | | | - | #### **Calculations:** Concentration of inorganic phosphate in serum (fS-P inorg.): fS-Inorganic phosphate (mmol/l) = $$\times$$ = | Concentration | of inor | rganic | phosphate | in | urine | (U-P) | inorg.) | : | |---------------|---------|--------|-----------|----|-------|-------|---------|---| |---------------|---------|--------|-----------|----|-------|-------|---------|---| U- Inorganic phosphate (mmol/l) = $$\frac{A_{urine}}{A_{standard}} \times c_{standard} \times Dilution of urine$$ # Daily output of inorganic phosphate into urine (dU-P): dU-Inorg. phosphate (mmol/24 hrs) = U-Inorg. phosphate (mmol/l) \times Volume of urine (liters/24 hrs) dU-Inorg. phosphate (mmol/24 hrs) = × = #### **Conclusion:** # Task 3: Estimation of catalytic concentration of alkaline phosphatase and its isoforms **Principle:** #### **Results:** | | Native serum
sample
(S1) | Control for native sample (S2) | Heat-inactivated sample (T1) | Control for heat-
inactivated
(T2) | |----------|--------------------------------|--------------------------------|------------------------------|--| | A 420 nm | | | | | #### **Calculations:** ## Subtraction of control absorbances: $$\Delta A_S = A_{S1} - A_{S2}$$ $$\Delta A_S = \dots - \dots = \dots$$ $$\Delta A_T = A_{T1} - A_{T2}$$ $$\Delta A_T \,=\, \dots \dots \, -\, \dots \dots \, =\, \dots \dots$$ #### Total catalytic concentration of ALP: Total ALP ($$\mu kat/l$$) = $\Delta A_S \times 10.263 = \times 10.263 =$ #### Catalytic concentration of the liver isoenzyme: Liver isoenzyme ALP (μ kat/I) = 1.5 × Δ A_T × 10.263 = ## Catalytic concentration of the bone isoenzyme: Bone isoenzyme ALP (μ kat/l) = Total ALP (μ kat/l) – Liver isoenzyme ALP (μ kat/l) Bone isoenzyme ALP (μkat/l) = = # **Conclusion:** | . Solubility of calcium | m salts in water a | nd HCl | | | |----------------------------------|---------------------------------|---------------------------------|--|---| | | Tube No. 1
CaCl ₂ | Tube No. 2
CaCO ₃ | Tube No. 3
Ca ₃ (PO ₄) ₂ | Tube No. 4
Ca ₃ (PO ₄) ₂
+ Na ₂ EDTA | | olubility in water | | | | | | olubility in HCl | - | | | | | colubility in NaHCO ₃ | - | - | | | | . Influence of some f | food components | on solubility of ca | lcium salts | | | | | No. 1 nonium oxalate | Tube No. 2 CaCl ₂ + Lactose | e | | Result | | | | | **Conclusion:** # Task 5 Quantitative estimation of Na⁺ in urine | n. | . | _ | ole: | |----|----------|-----------|------| | PI | rın | C I I | иe. | | | | | | #### **Results:** | | E (mV) | pNa | Concentration Na ⁺ (mol/l) | |---------------------|--------|-----|---------------------------------------| | Standard solution 1 | | 1 | 0.1 | | Standard solution 2 | | 2 | 0.01 | | Standard solution 3 | | 3 | 0.001 | | Urine sample | | | | # Calibration curve for estimation of Na⁺ concentration: Plot the pNa values on the x axis and the potential in mV on the y axis. Next, use the calibration graph to read the pNa for the analyzed urine sample. | | | |---|---| | | | | | | | | 4:::::::::::::::::::::::::::::::::::: | | | | | | | | | | | 4 | *************************************** | 4:::::::::::::::::::::::::::::::::::: | | | | | | | | | {} | | | | | | | | | 1:::::::::::::::::::::::::::::::::::: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1: | | | | | | | | | | # ************************************ | Calculation | of urinary | Na^+ | concentration: | |-------------|------------|--------|----------------| |-------------|------------|--------|----------------| $$pNa = -log[Na^+]$$ $$pNa_{diluted\ urine} =$$ $[Na^+]_{diluted\ urine} = 10^{-pNa} =$ $mol/1$ $$U-Na^+=10 \times [Na^+]_{diluted \text{ urine}} = \dots mol/l$$ ## Daily output of Na⁺ into urine: $$dU-Na^+ = U-Na^+ (mol/l) \times Vol. urine (liters/24 hrs)$$ #### Fractional excretion (FE) of Na⁺: - U_{Cr} Concentration of creatinine in urine (mmol/l): - P_{Cr} Concentration of creatinine in serum (mmol/l): - U_{Na} Concentration of sodium in urine (mmol/l): - P_{Na} Concentration of sodium in serum (mmol/l): $$FE_{Na} = \frac{U_{Na} \times P_{Cr}}{U_{Cr} \times P_{Na}}$$ #### Tubular resorption (TR) of Na⁺: $$TR_{Na} = 1 - FE_{Na} = \dots$$ #### **Conclusion:**