Date Name			Group			
Lab report from the practical lesson on biochemistry						
торіс: Calcium, phosph	orus, sodium,	metabolism o	of bone tissue	!		
Task 1: Estimation of Principle:	of total calci	um in serun	n and urine			
Results:						
	Serum sample (Tube No. 1)	Urine sample (Tube No. 2)	Standard (Tube No. 3)	Blank (Tube No. 4)		
A 650 nm				-		
Calculations:						
Concentration of total calciu	m in the serum (S	S-Ca):				
S-Calcium (mmol/l) = —	A _{serum}	× C _{standard}				
	$A_{standard}$	Standard				
S-Calcium (mmol/l) =		× =				
Concentration of calcium in	the urine (U-Calc	cium):				
U- Calcium (mmol/l) =—	A _{urine} ×	$c_{standard} \times Dilut$	ion of urine			
	$A_{ ext{standard}}$					
U- Calcium (mmol/l) = ——	×	×	=			

Daily output	of	calcium	into	urine	(dU-	Calcium):
--------------	----	---------	------	-------	------	-----------

dU-Calcium (mmol/24 hrs) = U-Calcium (mmol/l) ×	Volume of urine (liters/24 hrs)
dU-Calcium (mmol/24 hrs) = ×	=

Conclusion:

Task 2: Estimation of inorganic phosphate in serum and urine **Principle**:

Results:

	Serum sample (Tube No. 1)	Urine sample (Tube No. 2)	Standard (Tube No. 3)	Blank (Tube No. 4)
A 340 nm				-

Calculations:

Concentration of inorganic phosphate in serum (fS-P inorg.):

fS-Inorganic phosphate (mmol/l) =
$$\times$$
 =

Concentration	of inor	rganic	phosphate	in	urine	(U-P)	inorg.)	:
---------------	---------	--------	-----------	----	-------	-------	---------	---

U- Inorganic phosphate (mmol/l) =
$$\frac{A_{urine}}{A_{standard}} \times c_{standard} \times Dilution of urine$$

Daily output of inorganic phosphate into urine (dU-P):

dU-Inorg. phosphate (mmol/24 hrs) = U-Inorg. phosphate (mmol/l) \times Volume of urine (liters/24 hrs)

dU-Inorg. phosphate (mmol/24 hrs) = × =

Conclusion:

Task 3: Estimation of catalytic concentration of alkaline phosphatase and its isoforms

Principle:

Results:

	Native serum sample (S1)	Control for native sample (S2)	Heat-inactivated sample (T1)	Control for heat- inactivated (T2)
A 420 nm				

Calculations:

Subtraction of control absorbances:

$$\Delta A_S = A_{S1} - A_{S2}$$

$$\Delta A_S = \dots - \dots = \dots$$

$$\Delta A_T = A_{T1} - A_{T2}$$

$$\Delta A_T \,=\, \dots \dots \, -\, \dots \dots \, =\, \dots \dots$$

Total catalytic concentration of ALP:

Total ALP (
$$\mu kat/l$$
) = $\Delta A_S \times 10.263 = \times 10.263 =$

Catalytic concentration of the liver isoenzyme:

Liver isoenzyme ALP (μ kat/I) = 1.5 × Δ A_T × 10.263 =

Catalytic concentration of the bone isoenzyme:

Bone isoenzyme ALP (μ kat/l) = Total ALP (μ kat/l) – Liver isoenzyme ALP (μ kat/l)

Bone isoenzyme ALP (μkat/l) = =

Conclusion:

. Solubility of calcium	m salts in water a	nd HCl		
	Tube No. 1 CaCl ₂	Tube No. 2 CaCO ₃	Tube No. 3 Ca ₃ (PO ₄) ₂	Tube No. 4 Ca ₃ (PO ₄) ₂ + Na ₂ EDTA
olubility in water				
olubility in HCl	-			
colubility in NaHCO ₃	-	-		
. Influence of some f	food components	on solubility of ca	lcium salts	
		No. 1 nonium oxalate	Tube No. 2 CaCl ₂ + Lactose	e
Result				

Conclusion:

Task 5 Quantitative estimation of Na⁺ in urine

n.	.	_ 	ole:
PI	rın	C I I	иe.

Results:

	E (mV)	pNa	Concentration Na ⁺ (mol/l)
Standard solution 1		1	0.1
Standard solution 2		2	0.01
Standard solution 3		3	0.001
Urine sample			

Calibration curve for estimation of Na⁺ concentration:

Plot the pNa values on the x axis and the potential in mV on the y axis. Next, use the calibration graph to read the pNa for the analyzed urine sample.

	
	4::::::::::::::::::::::::::::::::::::
4	***************************************
	4::::::::::::::::::::::::::::::::::::
	{}
	1::::::::::::::::::::::::::::::::::::
	
	
	
	
	1:
	
	# ************************************

Calculation	of urinary	Na^+	concentration:
-------------	------------	--------	----------------

$$pNa = -log[Na^+]$$

$$pNa_{diluted\ urine} =$$
 $[Na^+]_{diluted\ urine} = 10^{-pNa} =$ $mol/1$

$$U-Na^+=10 \times [Na^+]_{diluted \text{ urine}} = \dots mol/l$$

Daily output of Na⁺ into urine:

$$dU-Na^+ = U-Na^+ (mol/l) \times Vol. urine (liters/24 hrs)$$

Fractional excretion (FE) of Na⁺:

- U_{Cr} Concentration of creatinine in urine (mmol/l):
- P_{Cr} Concentration of creatinine in serum (mmol/l):
- U_{Na} Concentration of sodium in urine (mmol/l):
- P_{Na} Concentration of sodium in serum (mmol/l):

$$FE_{Na} = \frac{U_{Na} \times P_{Cr}}{U_{Cr} \times P_{Na}}$$

Tubular resorption (TR) of Na⁺:

$$TR_{Na} = 1 - FE_{Na} = \dots$$

Conclusion: