Date Name			Group	
Lab report from the p	ractical lesson	on biochemis	try	
Торіс: Non-protein nitr	ogen compou	nds		
Task 1: Estimation Principle:	of creatinine	in serum aı	nd urine	
Results:				
	Serum sample (Tube No 1)	Urine sample (Tube No 2)	Standard (Tube No 3)	Blank (Tube No 4)
A505				-
Calculations: Concentration of creatinine S-Creatinine (µmol/l) =	A _{serum} A _{standa}	× C _{stan}	_{dard} (μmol/l)	
S-Creatinine (μmol/l) =			=	
Concentration of creatinine	e in the urine (U-C	Creatinine):		
U-Creatinine (mmol/l) =-	$A_{ ext{urine}}$ $A_{ ext{standard}}$	× c _{standard} (mmol/l) × Dilution of	urine
U-Creatinine (mmol/l) =—	×	×	=	

Daily output of creatinine into urine (dU-Creatinine):

dU-Creatinine (mmol/24 hrs) = U-Creatinine (mmol/1) × Volume of urine (liters/24 hrs)

dU-Creatinine (mmol/24 hrs) = × =

Task 2: Calculation of clearance of endogenous creatinine **Principle**:

Clearance of endogenous creatinine (Cl_{Cr}):

$$Cl_{Cr} (ml/s) = \frac{U \times V}{P}$$

Clearance of endogenous creatinine corrected to body surface:

$$A = 0.167 \times \sqrt{m \times 1}$$

$$A = 0.167 \times \sqrt{....} = ...$$

$$Cl_{Cr} corr. (ml/s) = Cl_{Cr} \times \frac{1.73}{A (m^2)}$$

Calculation of creatinine clearance from serum creatinine using the Cockroft & Gault formula:

Gender of the patient:

Age of the patient:

$$Cl_{Cr} (ml/s) = \times \frac{(140 -) \times}{44.5 \times} =$$

Calculation of fractional excretion and tubular reabsorption of water:

a) Fractional excretion (FE) of water:

$$FE_{H2O} = \frac{P_{creatinine}}{U_{creatinine}}$$

b) Tubular reabsorption (TR) of water:

$$TR_{H2O} = \frac{Cl_{Cr} - V}{Cl_{Cr}}$$

Conclusion:

Do any of these parameters indicate impaired renal functions?

Is there a discrepancy between measured and calculated clearance that would suggest an inadequate collection of urine?

Task 3: Estimation of urea in serum and urine

Principle:

Results:

	Cuvette No. 1 Serum sample	Cuvette No. 2 Urine sample	Cuvette No. 3 Standard
Absorbance A ₁			
Absorbance A ₂			

Calculations:

Concentration of urea in serum (S-Urea):

S-Urea (mmol/l) =
$$\frac{(A_1 - A_2)_{serum}}{(A_1 - A_2)_{standard}} \times c_{standard}$$

Concentration of urea in the urine (U-Urea):

$$U-Urea (mmol/l) = \frac{(A_1 - A_2)_{urine}}{(A_1 - A_2)_{standard}} \times c_{standard} \times Dilution of urine$$

Daily output of urea into urine (dU-Urea):

dU-Urea (mmol/24 hrs) = U-Urea (mmol/l) × Volume of urine (liters/24 hrs)

Conclusion:				
Task 4: Estim Principle:	ation of uric a	cid in serum a	and urine	
Results:				
	Serum sample (Tube No. 1)	Urine sample (Tube No. 2)	Standard (Tube No. 3)	Blank (Tube No. 4)
Absorbance 520 nm				

Calculations:

Uric acid in serum (S-Uric acid):

S-Uric acid (
$$\mu$$
mol/l) = A_{serum} × $c_{standard}$ (μ mol/l)

-Uric acid $(umol/l) = -$		- × =		
-One acid (μιποι/1) =		X		
ric acid in the urine (U-	Uric acid):			
II Urio acid (mmal/l) -	Aurine	v a (mmal/l) v Dilution of uring		
0-one acid (minoi/i) =-	$ \text{mmol/l} = \frac{\text{mmol/l}}{A_{\text{standard}}} \times c_{\text{standard}} \text{ (mmol/l)} \times \text{Dilution of ur}$	Cstandard (Hilliol/1) X Dilution of urine		
J-Uric acid (mmol/l) = -	······································	× =		
Daily output of uric acid i	nto urine (dU-Uri	c acid):		
TT TT	rs) = U-Uric acid (r	mmol/l) × Volume of urine (liters/24 hrs)		

Task 5: Calculation of clearance and fractional excretion of uric acid **Principle**:

Calculations:

Clearance of uric acid (Cl_{UA}):

U_{UA} Concentration of uric acid in urine (mmol/l):

 $P_{UA} \hspace{0.5cm} \hbox{Concentration of uric acid in serum (mmol/l):} \hspace{0.5cm}$

V Volume of urine per 24 hours (ml/s):

$$Cl_{UA} (ml/s) = \frac{U_{UA} \times V}{P_{UA}}$$

Fractional excretion of uric acid:

U_{Cr} Concentration of creatinine in urine (mmol/l):

P_{Cr} Concentration of creatinine in serum (mmol/l):

U_{UA} Concentration of uric acid in urine (mmol/l):

P_{UA} Concentration of uric acid in serum (mmol/l):

$$FE_{UA} = \frac{U_{UA} \times P_{Cr}}{U_{Cr} \times P_{UA}}$$

$$FE_{UA} =$$
 =

Conclusion:

Task 6: Murexide reaction
Principle:
Results/observation:
Task 7: Solubility of uric acid
Principle:
Results/observation:
Conclusion: