Lab report from the practical lesson on biochemistry

Topic: Reactions of saccharides. Thin layer chromatography. Polarimetry

Task 1: Analysis of unknown sample of saccharide by means of color reactions

Principle:

Reaction	Chemical principle of the test	Main reagent components	Positively reacting substances
Molisch reaction			
Bial reaction			
Selivanov reaction			
Benedict reaction			
Barfoed reaction			
Reaction with Schiff reagent			
Reaction for starch			

Molisch reaction:

	Test tube 1	Test tube 2	Test tube 3	Test tube 4
	FRUCTOSE	MALTOSE	UNKNOWN	BLANK
Result				

Bial reaction:

	Test tube 1	Test tube 2	Test tube 3	Test tube 4
	XYLOSE	GLUCOSE	UNKNOWN	BLANK
Result				

Selivanov reaction:

	Test tube 1	Test tube 2	Test tube 3	Test tube 4	Test tube 5
	GLUCOSE	FRUCTOSE	SUCROSE	UNKNOWN	BLANK
Result					

Benedict reaction:

	Test tube 1 GLUCOSE	Test tube 2 MALTOSE	Test tube 3 SUCROSE	Test tube 4 ASCORBIC ACID	Test tube 5 UNKNOWN	Test tube 6 BLANK
Result						

Barfoed reaction:

	Test tube 1	Test tube 2	Test tube 3	Test tube 4	Test tube 5
	GLUCOSE	MALTOSE	SUCROSE	UNKNOWN	BLANK
Result					

Reaction with the Schiff reagent:

	Test tube 1	Test tube 2	Test tube 3	Test tube 4
	GLUCOSE	FORMALDEHYDE	UNKNOWN	BLANK
Result				

Reaction for demonstration of starch:

	Test tube 1	Test tube 2	Test tube 3	Test tube 4
	GLUCOSE	STARCH	UNKNOWN	BLANK
Result				

Discussion to particular color reactions and analysis of unknown sample:

Task 2: Thin layer chromatography of saccharides

Principle:

Evaluation:

- 1. Draw a scheme of the developed chromatogram. Notice all the spots present and their colors after detection. Measure the distance of the solvent from the start and also the distance of the center of each spot from the start. Use these values to calculate the R_f for each saccharide and summarize the results in the table.
- 2. Try to identify the saccharide in the unknown sample on the basis of comparison of its R_f value with the R_f of the standards.

Scheme of chromatogram:

	Spot color	Distance a (start – center of spot) in cm	Distance b (start – solvent front) in cm	$\mathbf{R}_{\mathbf{f}}$
Galactose				
Maltose				
Lactose				
Fructose				
Unknown sample				

Conclusion:

Thin layer chromatography indicates that the unknown sample No. is

Summary of results and discussion of the analysis of the unknown sample both by means of the color reactions and the thin layer chromatography:

Task 3: Inversion of sucrose

Principle:

Results:Optical activity of the *original sucrose* solution: $\alpha = \dots$ Optical activity of the *hydrolysate of sucrose*: $\alpha = \dots$

Evaluation:

1. Calculation of the original concentration of sucrose:

$$w(g/1) = \frac{\alpha \times 100}{[\alpha]_{D}^{20^{\circ}C} \times 1}$$
 1 = 0.2 m; specific rotation for sucrose: $[\alpha]_{D}^{20^{\circ}C} = +66.5^{\circ}$

 $w (g / l) = \dots$

2. Calculation of the optical activity of invert sugar after hydrolysis of sucrose (verification of hydrolysis completion):

Sucrose c(mol/l) = (MW of sucrose: 342)

Predicted mass concentration of the hydrolysis products glucose and fructose:

Glucose w(g/l) =fructose $w(g/l) = \dots$ (MW of glucose = MW of fructose: 180)

Predicted optical activity of the solution after hydrolysis:

$$\alpha = \left[\alpha\right]_{D \quad D\text{-glucose}}^{20^{\circ}\text{C}} \times \frac{l \times w}{100} \quad + \quad \left[\alpha\right]_{D \quad D\text{-fructose}}^{20^{\circ}\text{C}} \times \frac{l \times w}{100}$$

Specific activity for D-glucose: $\left[\alpha\right]_{D}^{20^{\circ}C} = +52.5^{\circ}$; for D-fructose: $\left[\alpha\right]_{D}^{20^{\circ}C} = -92.4^{\circ}$

$\alpha =$

Conclusion:

(Was the hydrolysis of sucrose achieved? Was it complete?)