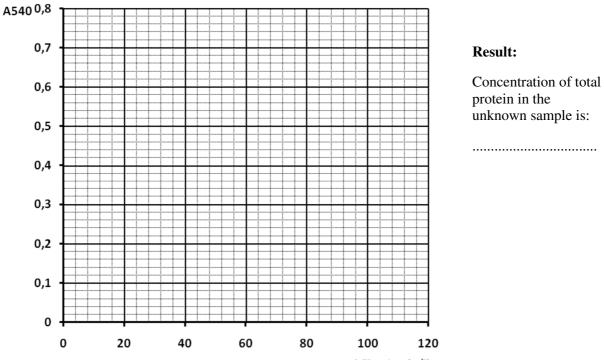
Date	Name o	Crou	
Date	Name	Grou	II)

Lab report from the practical lesson on biochemistry

Topic: Proteins in serum and urine


Task 1: Estimation of total serum protein with the biuret method

1. Principle:

2. Results:

	Test tube 1	Test tube 2	Test tube 3	Test tube 4	Test tube 5	Test tube 6	Test tube 7
	St.1 20 g/l	St.2 40 g/l	St.3 60 g/l	St.4 80 g/l	St.5 100 g/l	Unknown	Blank
A ₅₄₀							0

3. Reading of protein concentration from calibration graph:

4. Conclusion:

Compare the total protein concentration measured in the unknown sample with the reference range.

Tack	2.	Fstimation	Ωf	Serum	concentration	n of	alhumin
ı ask	4:	ESUIIIauon	UI	serum	concenti atio	JII UI	aibuiiiii

1. Principle:

2. Results and evaluation:

	Test tube 1	Test tube 2	Test tube 3
	Sample	Standard	Blank
A ₆₃₀			0

S-albumin (g/l) =
$$\frac{A_{\text{sample}}}{A_{\text{standard}}} \times \text{standard concentration}$$

S-albumin (g/I) =

3. Conclusion:

Compare the albumin concentration measured in the unknown serum sample with the reference range.

Task 3: Evaluation of electrophoresis of serum proteins

	_					
1	. P	rī	n	ci.	nl	ο.
4				u	vi	┖.

2. Experiment and evaluation:

Authentic electrophoreograms of serum proteins are available.

Evaluate three of them. Redraw their densitometric records here and try to determine what type of dysproteinemia is present.

Task 4: Qualitative estimation of protein in urine						
1. Principle:						
2. Results:						
Test	Urine wit	th protein U	rine without protein			
Sulfosalicylic acid						
Test strip						
Task 5: Quantitativ	ve estimation of pr	otein in urine				
2. Results:						
	Test tube 1 Sample	Test tube 2 Standard	Test tube 3 Blank			

 A_{600}

0

3. Evaluation:

Concentration of protein in urine (U-protein):

U-protein (g/l) =
$$\frac{A_{\text{sample}}}{A_{\text{standard}}} \times \text{standard concentration}$$

U-protein
$$(g/I) =$$

Loss of protein to urine per 24 hours (dU-protein):

dU-protein (g/24 h) = U-protein (g/I)
$$\times$$
 diuresis (I/24 h) dU-protein (g/24 h) =

4. Conclusion:

Interpret the measured values.

Task 6: Evaluation of electrophoresis of urinary proteins

1. Principle:

2. Experiment and evaluation:

Authentic electrophoreograms of urinary proteins are available. Evaluate three of them. Draw the positions of the observed protein fractions here and try to determine what type of proteinuria is present.