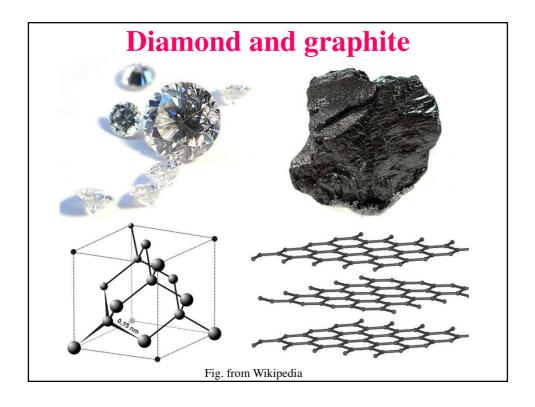
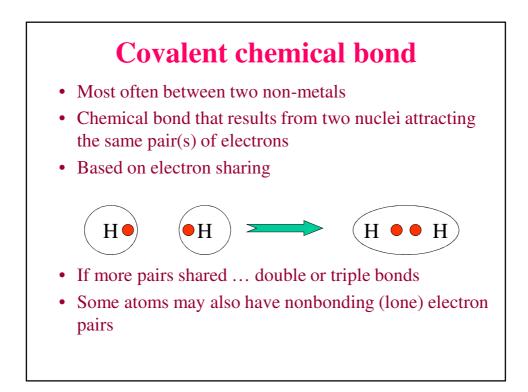

# Naming Inorganic Compounds Ionic Equations


MUDr. Jan Pláteník, Ph.D.







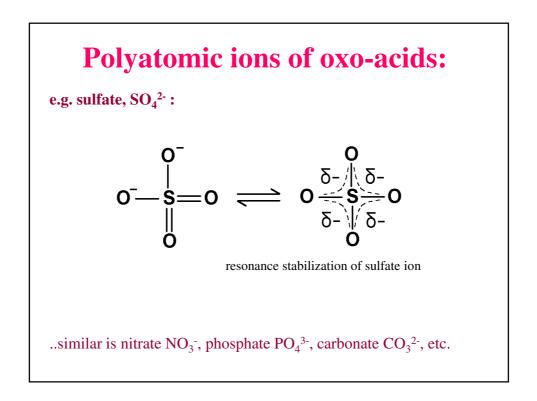


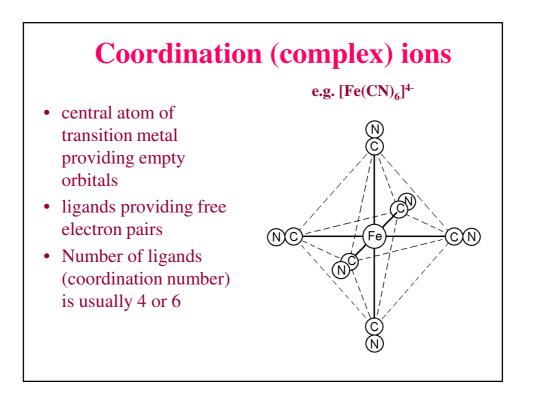


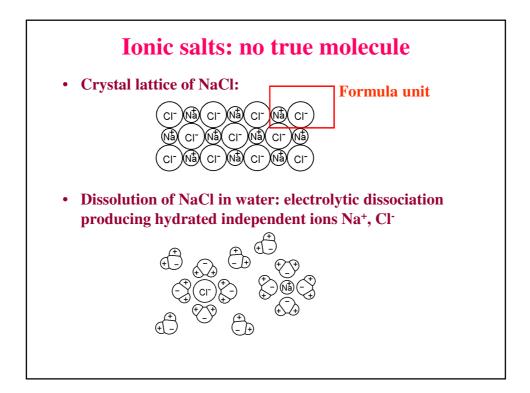


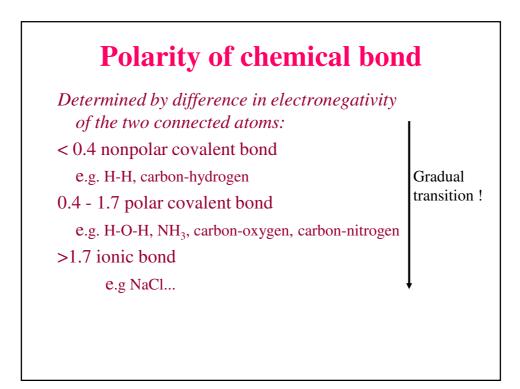








- Consist of charged particles (ions) held together by **ionic bonds**
- Metal + non-metal(s)
- Cations (+) and anions (-) combine in space to achieve electroneutrality





# Ions

- Charged because number of electrons does not match number of protons
- Tendency to form ions depends on **electronegativity** of element
- Monoatomic: Na<sup>+</sup>, Cl<sup>-</sup>, H<sup>+</sup>, Fe<sup>2+</sup>
- Polyatomic: NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup>
- Complex: [Fe(CN)<sub>6</sub>]<sup>4-</sup>









7

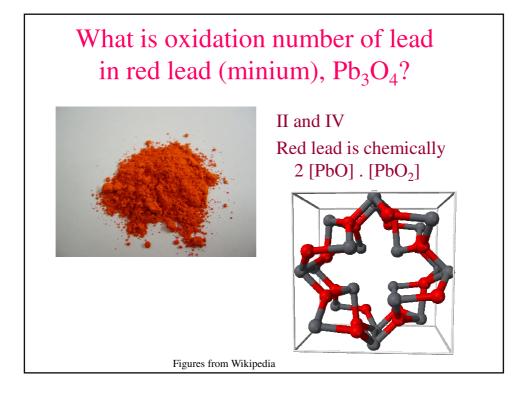
### **Oxidation number (formal valency)**

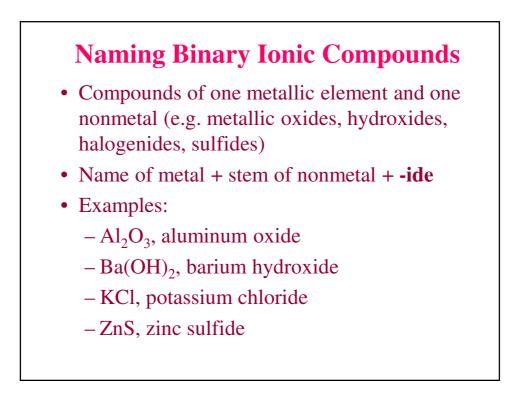
- Oxidation number of element in compound equals its charge after giving all bonding electron pairs to the more electronegative atom
- Can be zero, positive or negative integer
- Basis for nomenclature of inorganic compounds
- Redox reactions: oxidation number increases in oxidation, decreases in reduction

| Oxidation number | Suffix      | General formula               |
|------------------|-------------|-------------------------------|
| Ι                | -ný         | X <sub>2</sub> O              |
| II               | -natý       | XO                            |
| III              | -itý        | X <sub>2</sub> O <sub>3</sub> |
| IV               | -ičitý      | XO <sub>2</sub>               |
| V                | -ečný/-ičný | X <sub>2</sub> O <sub>5</sub> |
| VI               | -ový        | XO <sub>3</sub>               |
| VII              | -istý       | X <sub>2</sub> O <sub>7</sub> |
| VIII             | -ičelý      | XO <sub>4</sub>               |

# Rules for determination of oxidation numbers

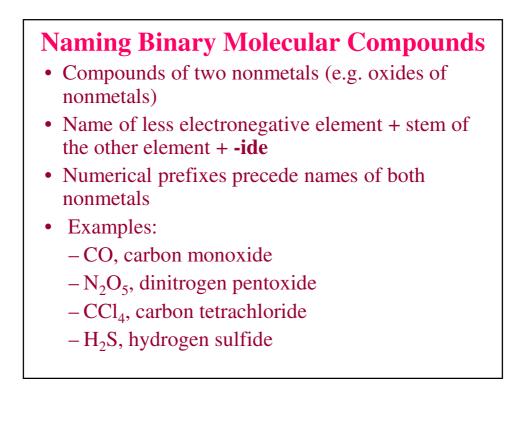
- Free electroneutral atom, or atom in molecule of pure element: oxidation number = 0
- Oxidation number of a monoatomic ion equals its charge
- In heteroatomic compounds the bonding electrons are given to the more electronegative atom, practically:
  - H has nearly always oxidation number I (only in metallic hydrides -I)
  - O almost always -II (only in peroxides -I)
  - F always -I
  - Alkali metals (Na, K..) always I
  - Alkaline earth elements (Ca, Mg..) always II


### Rules for determination of oxidation numbers

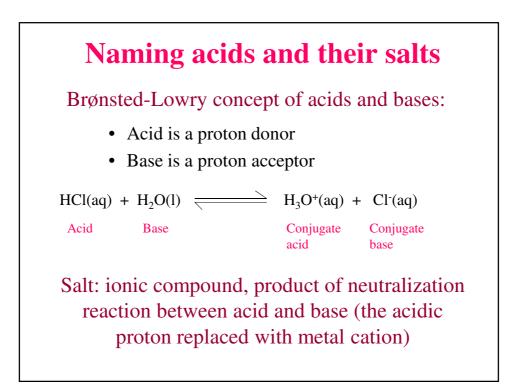

Examples:

 $CO_2 : C^{IV}, O^{-II}$  $H_2SO_4 : H^I, S^{VI}, O^{-II}$ 

Sum of oxidation numbers of all atoms in electroneutral molecule is 0, in polyatomic ion equals the ion charge


e.g:  $CO_3^{2-}: C^{IV}, O^{-II} \qquad 1 \times IV + 3 \times (-II) = -2$ 






### **Naming Binary Ionic Compounds**

- Numerical prefixes are never used.
- If the metal can exist in more oxidation states, its oxidation number is included to the name
- Examples:
  - FeCl<sub>3</sub>, iron(III) chloride (ferric chloride)
  - FeCl<sub>2</sub>, iron(II) chloride (ferrous chloride)
  - CuO, copper(II) oxide (cupric oxide)
  - Cu<sub>2</sub>O, copper(I) oxide (cuprous oxide)



| <b>Numerical prefixes:</b> |    |        |   |  |
|----------------------------|----|--------|---|--|
| Numb                       | er | Prefix |   |  |
|                            | 1  | mono-  |   |  |
|                            | 2  | di-    |   |  |
|                            | 3  | tri-   |   |  |
|                            | 4  | tetra- |   |  |
|                            | 5  | penta- |   |  |
|                            | 6  | hexa-  |   |  |
|                            | 7  | hepta- |   |  |
|                            | 8  | octa-  |   |  |
|                            | 8  | nona-  |   |  |
|                            | 10 | deca-  | 1 |  |



### Naming acids and their salts

### A) hydroacids:

Gaseous nonmetallic hydrides whose aqueous solutions are acidic

E.g. HCl, hydrochloric acid (aqueous hydrogen chloride), salts: chloride

### Likewise:

- HBr, hydrobromic acid, salts bromides
- -H<sub>2</sub>S, hydrosulfuric acid, salts sulfides
- HCN, hydrocyanic acid, salts cyanides

## Naming acids and their salts

### **B**) oxo-acids:

Central atom + -OH groups, protons dissociate from oxygen. In salts appear as polyatomic anions

If only one oxidation state of the central atom is possible:

Stem of the central atom + -ic acid

E.g. H<sub>2</sub>CO<sub>3</sub>, carbonic acid, salt: carbonate

### Naming acids and their salts

### **B**) oxo-acids:

If there are two possible oxidation states of the central atom:

Higher ox. number: -ic acid, salt: -ate

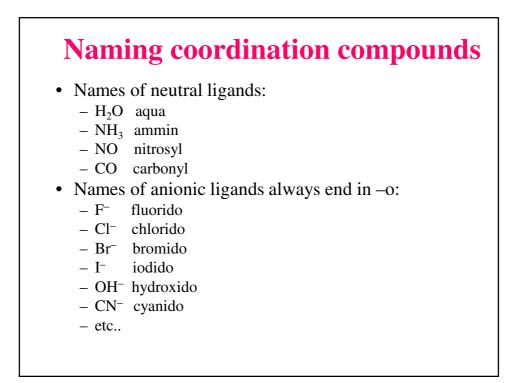
Lower ox. number: -ous acid, salt: -ite

Example:

 $H_2SO_4$ , sulfuric acid, salt: sulfate

H<sub>2</sub>SO<sub>3</sub>, sulfurous acid, salt: sulfite

## Naming acids and their salts


### **B) oxo-acids:**

If there are more than two possible oxidation states of the central atom, prefixes are used:
HClO, hypochlorous acid, salt: hypochlorite
HClO<sub>2</sub>, chlorous acid, salt: chlorite
HClO<sub>3</sub>, chloric acid, salt: chlorate
HClO<sub>4</sub>, perchloric acid, salt: perchlorate

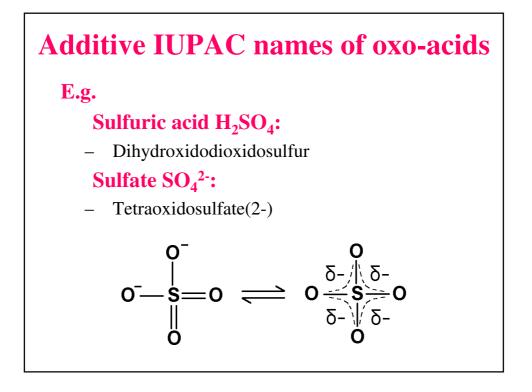
# The oxidation numbers can also be used with metals in anions:

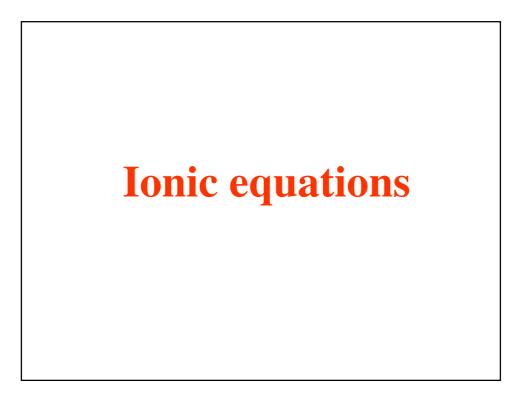
MnO<sub>4</sub><sup>2-</sup>: manganate(VI) or just manganate MnO<sub>4</sub><sup>-</sup>: manganate(VII) or permanganate

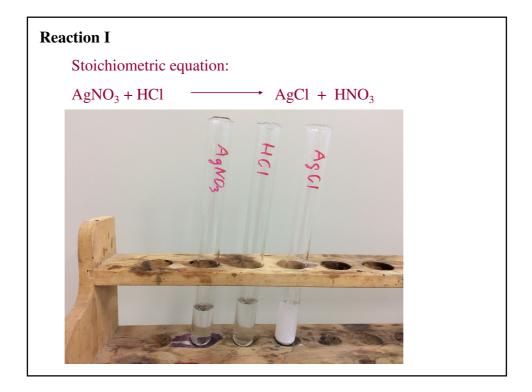
[Fe(CN)<sub>6</sub>]<sup>4-</sup>: hexacyanoferrate(II) or ferrocyanide [Fe(CN)<sub>6</sub>]<sup>3-</sup>: hexacyanoferrate(III) or ferricyanide



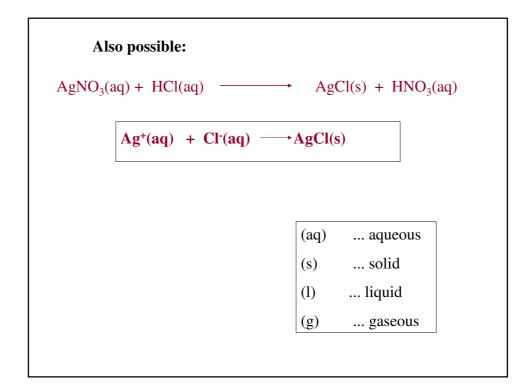
# Naming coordination compounds


1. Complex particle is cation:

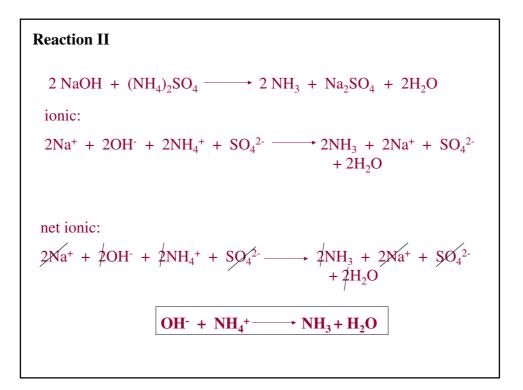

e.g.  $[Cu(NH_3)_4]SO_4$  $[Cu(NH_3)_4]^{2+} + SO_4^{2-}$ Tetraamminecopper(II) sulfate

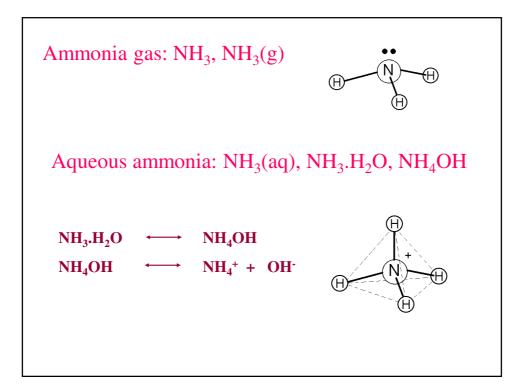

### 2. Complex particle is anion:

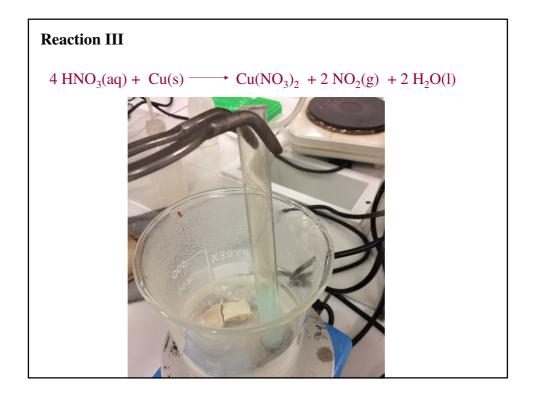
e.g.  $K_3[CoF_6]$ 3 K<sup>+</sup> +  $[CoF_6]^{3-}$ Potassium hexafluoridocobaltate(III)


# **Antipic coordination compounds6.** Both cation and anion are complexes $e.g. [Pt(NH_3)_4][PtCl_4]$ $[Pt(NH_3)_4]^{2+} + [PtCl_4]^{2-}$ Tetraammineplatinum(II) tetrachloridoplatinate(II)**6.** Sector $(CrCl_3(H_2O_3))$ Triaquatrichloridochromium(III) complex



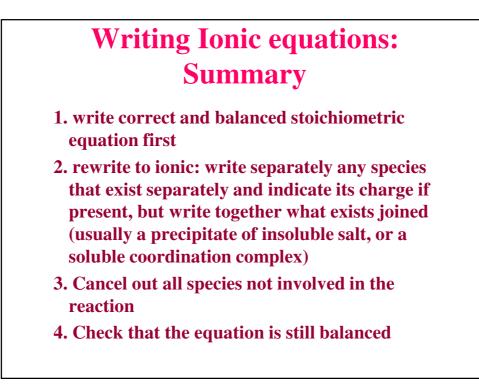




| Reaction I                                                                                              |
|---------------------------------------------------------------------------------------------------------|
| Stoichiometric equation:                                                                                |
| $AgNO_3 + HCl \longrightarrow AgCl + HNO_3$                                                             |
| Ionic equation:                                                                                         |
| $Ag^+ + NO_3^- + H^+ + Cl^- \longrightarrow AgCl + H^+ + NO_3^-$                                        |
| Net ionic equation:<br>$Ag^{+} + NO_{3}^{-} + M^{+} + Cl^{-} \longrightarrow AgCl + M^{+} + NO_{3}^{-}$ |
| $Ag^+ + Cl^- \longrightarrow AgCl$ white ppt                                                            |



# What combinations of cations and anions are insoluble? All nitrates (NO<sub>3</sub><sup>-</sup>) and acetates (CH<sub>3</sub>COO<sup>-</sup>) are soluble. All salts of Na, K, Li, and NH<sub>4</sub><sup>+</sup> are soluble except salts of Pb<sup>2+</sup>, Ag<sup>+</sup>, and Hg<sub>2</sub><sup>2+</sup>. Most sulfate salts are soluble except BaSO<sub>4</sub>, PbSO<sub>4</sub>, HgSO<sub>4</sub>, and CaSO<sub>4</sub>. Most metal hydroxides are insoluble. Soluble are only LiOH, NaOH, KOH, Ba(OH)<sub>2</sub> and Ca(OH)<sub>2</sub>. Most sulfides (S<sup>2-</sup>), carbonates (CO<sub>3</sub><sup>2-</sup>) and phosphates (PO<sub>4</sub><sup>3-</sup>) are insoluble.








| Reaction III                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $4 \text{ HNO}_3(\text{aq}) + \text{Cu}(\text{s}) \longrightarrow \text{Cu}(\text{NO}_3)_2 + 2 \text{ NO}_2(\text{g}) + 2 \text{ H}_2\text{O}(1)$                                    |
| Ionic:                                                                                                                                                                               |
| $4 H^+ + 4 NO_3^- + Cu \longrightarrow Cu^{2+} + 2 NO_3^- + 2 NO_2 + 2 H_2O$                                                                                                         |
| Net ionic:<br>$4 H^{+} + 4 NO_{3}^{-} + Cu \longrightarrow Cu^{2+} + 2 NO_{3}^{-} + 2 NO_{2} + 2 H_{2}O$ $4 H^{+} + 2 NO_{3}^{-} + Cu \longrightarrow Cu^{2+} + 2 NO_{2} + 2 H_{2}O$ |

**Reaction III**   $4 \text{ HNO}_{3}(aq) + \text{Cu}(s) \longrightarrow \text{Cu}(\text{NO}_{3})_{2} + 2 \text{ NO}_{2}(g) + 2 \text{ H}_{2}\text{O}(l)$ Ionic:  $4 \text{ H}^{+} + 4 \text{ NO}_{3}^{-} + \text{Cu} \longrightarrow \text{Cu}^{2+} + 2 \text{ NO}_{3}^{-} + 2 \text{ NO}_{2} + 2 \text{ H}_{2}\text{O}$ Oxidation numbers:  $H: +I \rightarrow +I$   $\text{Cu: } 0 \rightarrow +II \text{ (loss of } 2 \text{ e}^{-} \dots \text{oxidized})$   $N: +V \rightarrow +V, + IV \text{ (gain of } + \text{ e}^{-} \dots \text{reduced})$   $O: -II \rightarrow -II$ 

