
Reactive Oxygen Species in the Body Antioxidant Defence

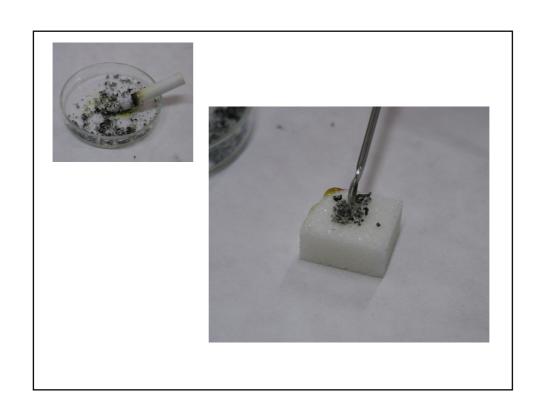
MUDr. Jan Pláteník Ph.D. Ústav lékařské biochemie a laboratorní diagnostiky 1.LF UK

What is a free radical?

- any chemical species (molecule, atom, ion) capable of independent existence that contains at least one unpaired electron

For what do we need oxygen?

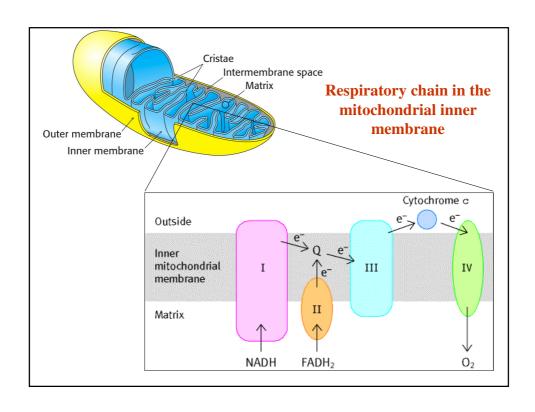
Transfer of electrons (oxidation) from organic substances to oxygen releases huge amount of energy

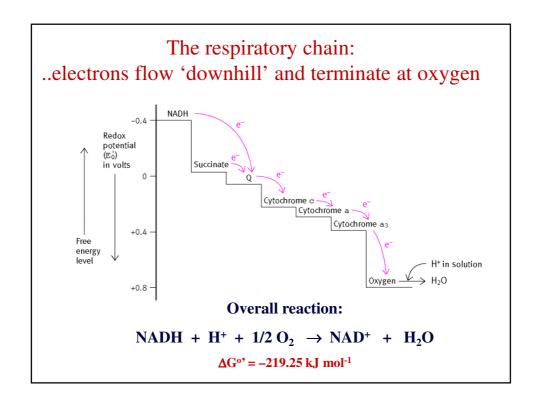

E.g. Glucose:
$$H_{12} O_{6} + 6 O_{2} \rightarrow 6 CO_{2} + 6 H_{2}O$$

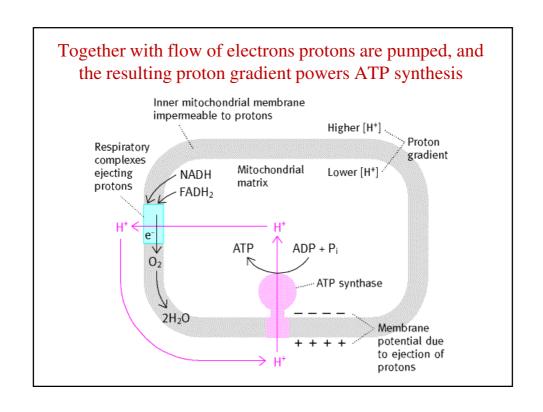
$$\Delta G^{0} = -2,820 \text{ kJ/mol} (180 \text{ g of glucose})$$

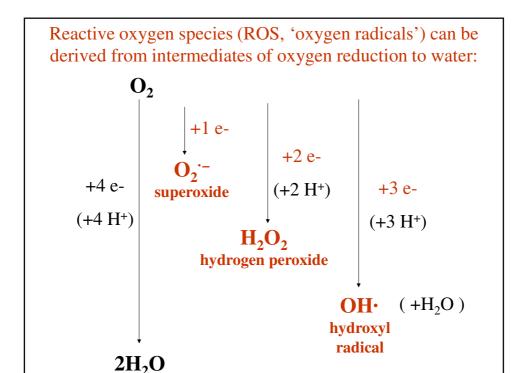
In addition, reactivity of oxygen can be controlled by catalysis with transition metals (iron, copper)

Does sugar burn?



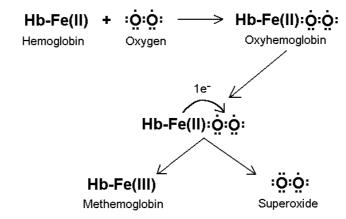



Spin restriction of dioxygen


- σ^*2s
- $\sigma^2 S$ O
- σ Is Ground state :

- Normal (triplet) O₂ is a biradical, with high affinity to electrons
- But gain of an electron requires one of the unpaired electrons changes its spin, which is a slow process.
- That's why we do not burn in the air
- Singlet O₂ is an excited, highly reactive species

Superoxide


- Sources in the body:
 - Escape of electrons to oxygen
 - Respiratory chain in mitochondria
 - Other similar redox carrier systems, e.g. microsomal cytochrome P450 monooxygenase
 - NAD(P)H Oxidase:
 - Phagocytes ("respiratory burst")
 - Non-phagocytic cells
 - Some enzymes:
 - Xanthine oxidase
 - Cyclooxygenase
 - Lipoxygenase
 - Reaction of FeII-hemoglobin with oxygen
 - Autoxidation (reaction with oxygen) of various compounds (ascorbate, glutathione and other thiols, catecholamines)

Superoxide production in the respiratory chain

- 1-2 % of total body oxygen consumption from in vitro experiments, in vivo surely much less
- Escape of electrons from redox centers of complexes I and III, mostly from semiquinone

Origin of superoxide from oxyhemoglobin

Štípek S et al.: Antioxidanty a volné radikály ve zdraví a nemoci. Grada Publishing, Praha, 2000.

Superoxide

- Properties:
 - Moderate reactivity, both oxidising and reducing agent
 - Limited ability to cross biological membranes (only through anion channels or in its protonated form)
 - Releases iron from Fe-S clusters
- Fate:
 - Dismutation:

$$\mathrm{O_2^{\cdot-}} + \mathrm{O_2^{\cdot-}} \ + \ 2 \ \mathrm{H^+} \rightarrow \ \mathrm{O_2} \ + \ \mathrm{H_2O_2}$$

- Reaction with nitric oxide:

$$NO^{-} + O_{2}^{--} \rightarrow OONO^{-}$$
 (peroxynitrite)

Hydrogen peroxide

- Formation in the body:
 - Dismutation of superoxide (spontaneous or catalyzed by superoxide dismutase)

$${\rm O_2}^{-} + {\rm O_2}^{-} \ + \ 2 \ {\rm H}^+ \! \to \ {\rm O_2} \ + \ {\rm H_2O_2}$$

- Directly by action of some enzymes:
 - Xanthine oxidase
 - Monoamine oxidase (MAO)

Hydrogen peroxide

• Properties:

- No radical
- Freely crosses biological membranes
- Fairly unreactive as such
- But rapidly reacts with reduced transition metals such as iron, copper (the Fenton reaction)

• Fate:

- The Fenton reaction:

hydroxyl radical

$$H_2O_2 + Fe^{2+} \rightarrow OH^- + OH^- + Fe^{3+}$$

 Safe decomposition by glutathione peroxidase, peroxiredoxin or catalase

Hydroxylový radikál

- Formation in the body:
 - Ionising radiation:

$$H_2O \rightarrow H^{\cdot} + OH^{\cdot}$$

– Fenton reaction:

$$\mathrm{H_2O_2}$$
 + $\mathrm{Fe^{2+}}$ \rightarrow $\mathrm{OH^-}$ + $\mathrm{OH^{\bullet}}$ + $\mathrm{Fe^{3+}}$

• Properties:

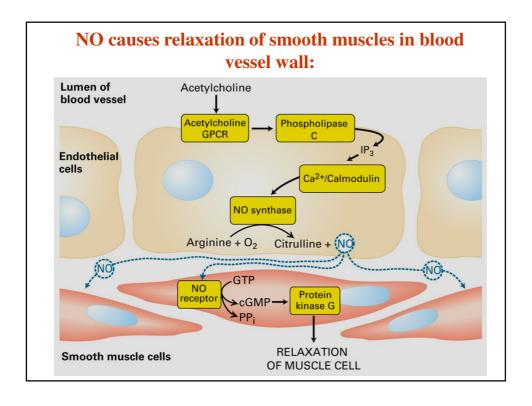
- Extremely reactive
- H abstraction: R-H + $OH \cdot \rightarrow H_2O + R \cdot$
- Addition to double bonds:

$$C=C + OH \cdot \rightarrow C-C \cdot$$

Reactive Oxygen Species (ROS)

- Radicals:
 - Superoxide, O₂.-
 - Hydroperoxyl radical, HO₂
 - Hydroxyl radical, OH·
 - Peroxyl radicals, ROO.
 - Alkoxyl radicals, RO.
- Non-radicals:
 - Hydrogen peroxide, H₂O₂
 - Hypochlorous acid, HClO
 - Ozone O₃
 - Singlet oxygen, ¹O₂

Nitric oxide



- Formation in the body:
 - Aerobic: NO synthase reaction:

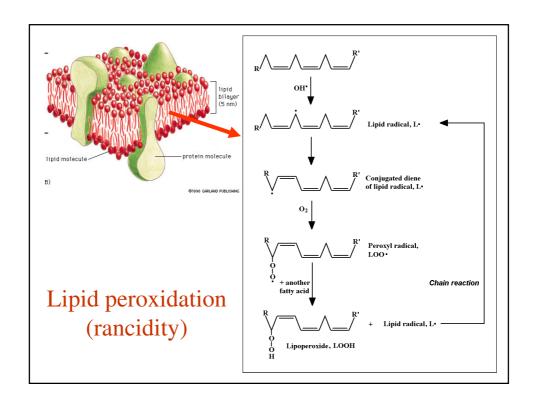
L-Arginine + O_2 + NADPH \rightarrow L-Citrulline + NADP+ + NO•

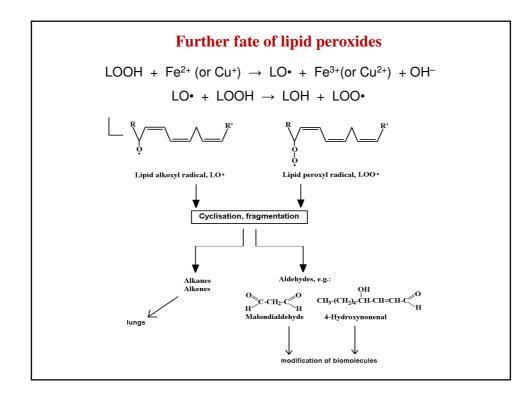
- Three different NO synthases:
 - NOS I (neuronal, constitutive)
 - NOS II (fagocytes, inducible)
 - NOS III (endothelial, constitutive)
- Hypoxia: Reduction of nitrite catalysed by hemoglobin and myoglobin:

DeoxyHb(FeII) + NO_2^- + $H^+ \rightarrow DeoxyHb(FeIII) + OH^- + NO^-$

Nitric oxide

• Properties:


- Gaseous radical
- Reaction with heme iron of guanylate cyclase (...physiological effects)
- Reaction with oxyhemoglobin to nitrate (...inactivation)
- Reaction with sulfhydryl groups on glutathione etc. to nitrosothiol R-S-N=O (...transport/storage)
- Reaction with superoxide to peroxynitrite then some can form hydroxyl radical (...toxicity):


NO·
$$+ O_2$$
 \rightarrow OONO- peroxynitrite

OONO- $+ H^+ \rightarrow$ HOONO \rightarrow OH· $+$ NO₂ peroxynitrous acid hydroxyl radical

Oxidative damage to biomolecules

- Lipids: peroxidation of polyunsaturated fatty acids in membranes
- **Proteins:** oxidation of -SH, carbonylation of -NH₂, hydroxylation/nitration of aromatic AA, cross-linking, degradation
- Nucleic acids: hydroxylation of bases, single or even double strand breaks ... mutation, cancerogenesis...

Ionising radiation:

Hydroxyl radical originates from ionisation of water:

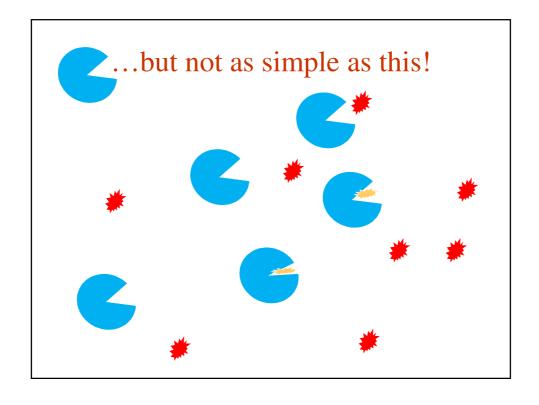
$$H_2O + hv \rightarrow H + OH \cdot$$

Reactive oxygen species in the body:

One-electron reduction of oxygen (mitochondria, NADPH oxidase) forms superoxide O₂.

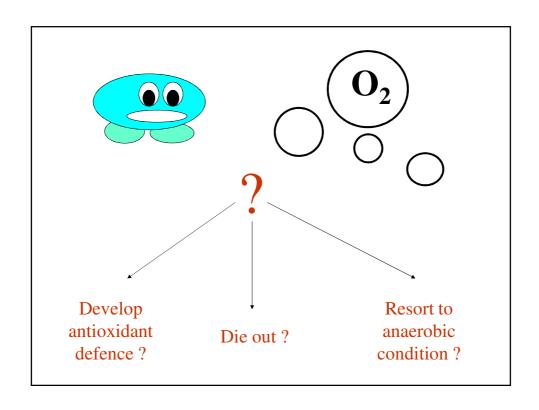
Dismutation of superoxide produces hydrogen peroxide:

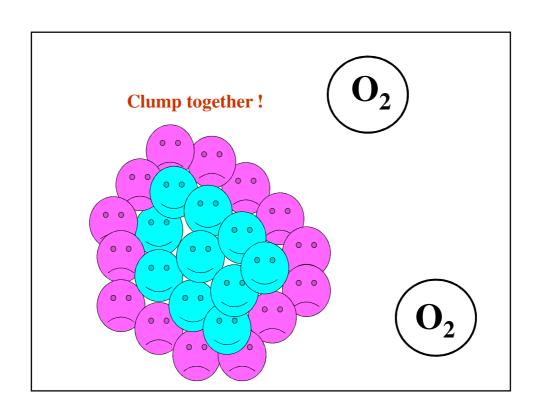
$$O_2^{-} + O_2^{-} + 2 H^+ \rightarrow O_2 + H_2O_2$$

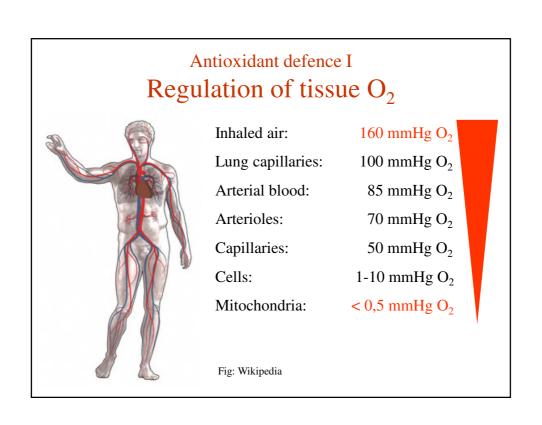

Fenton reaction with Fe or Cu converts peroxide to hydroxyl radical:

$$H_2O_2 + Fe^{2+} \rightarrow OH^- + OH \rightarrow Fe^{3+}$$

Antioxidant defence


- prevention of ROS/RNS formation (regulation of producing enzymes, sequestration of metals)
- scavenging, trapping and quenching of radicals
- reparation systems (phospholipases, proteasome, DNA repair)


...absolutely necessary for life with oxygen

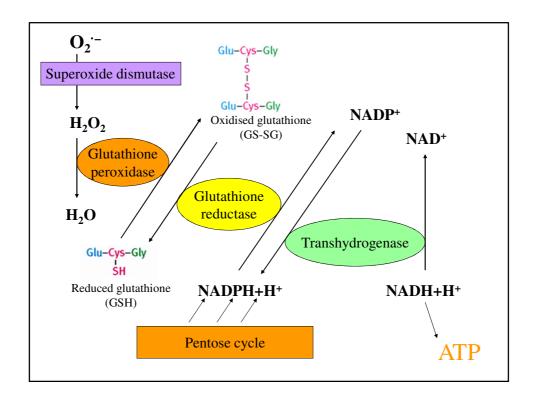


Antioxidant defence of human body

- Anatomy of the body limiting tissue oxygen
- Antioxidant enzymes
- Sequestration of redox active metals
- Antioxidant substrates (scavengers)
- Stress response
- (Repair systems)

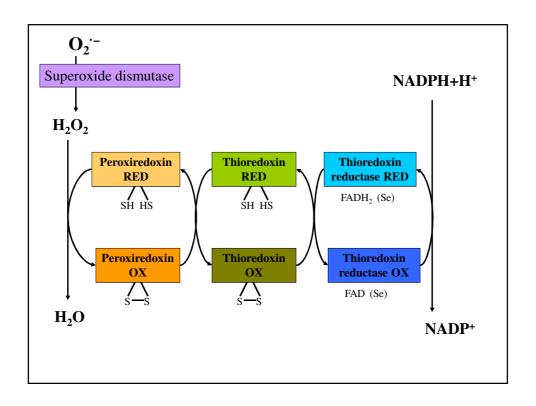
Antioxidant defence II Antioxidant enzymes

• Superoxide dismutase:


$$O_2^{-} + O_2^{-} + 2 H^+ \rightarrow O_2 + H_2O_2$$

• Catalase:

$$2 \text{ H}_2\text{O}_2 \rightarrow 2 \text{ H}_2\text{O} + \text{O}_2$$


• Glutathione peroxidase, peroxiredoxin:

$$H_2O_2 + 2 R-SH \rightarrow 2 H_2O + RS-SR$$

Peroxiredoxin/Thioredoxin

• More recently discovered antioxidant system, more important for removal of hydrogen peroxide than GPX

Antioxidant defence III Sequestration of metals

- Redox-active transition metals (Fe, Cu) accept/donate one electron easily
 - ... alleviation of spin restriction of dioxygen
 - ... metals are in active centers of all oxygen handlingenzymes
- But, the same properties of Fe, Cu are deleterious if uncontrolled
 - the Fenton oxidant:

$$H_2O_2 + Fe^{2+} \rightarrow OH^- + OH \cdot + Fe^{3+}$$
 oxidative damage to biomolecules

Antioxidant defence III Sequestration of metals

- Iron/copper handling proteins:
 - transferrin: binds 2 atoms Fe³⁺ (transport)
 - lactoferrin: analogous to transferrin, but no Fe release (... only sequestration), leucocytes
 - ferritin: H and L subunits, H is ferroxidase, Fe storage (up to 4500 atoms Fe³⁺)
 - haptoglobin: binds hemoglobin in circulation
 - hemopexin: binds heme in circulation
 - ceruloplasmin: contains Cu, function: ferroxidase (export Fe from the cells)
 - albumin: transport of Cu

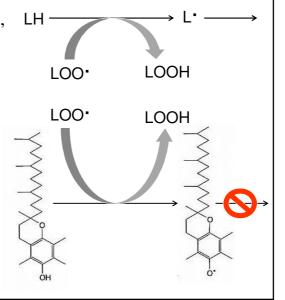
ECT	ICT
Superoxide Peroxide Fe/S	Saperoxide Proxise Fe/Cu
Antioxidant enzymes & glutathione levels very low	Superoxide dismutase Peroxiredoxins Glutathione peroxidases Catalase
Sequestration of iron and copper: - Transferrin, lactoferrin - Haptoglobin - Hemopexin - Ceruloplasmin (ferroxidase) - Albumin (binds Cu)	Excess iron stored in ferritin, but some redox-active iron present

Antioxidant defence IV Low-molecular-weight antioxidant substrates

• ENDOGENOUS:

- Glutathione
- Bilirubin
- Uric acid
- ...

• DIETARY:

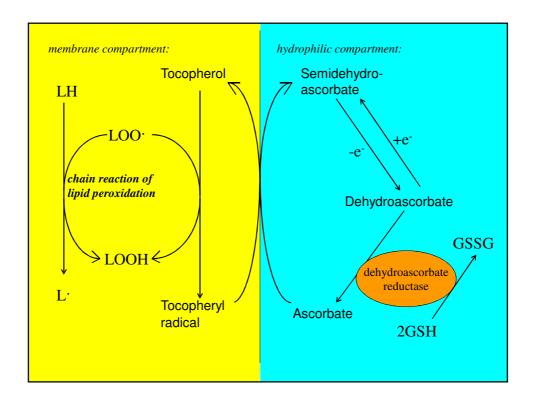

- Ascorbate (Vitamin C)
- α-Tocopherol (Vitamin E)Carotenoids
- Plant phenols

Glutathione (GSH/GSSG)

- tripeptide, in every cell 1-10 mM
- · keeps ICT reduced
- substrate for GPX, etc.
- also non-enzymatic reactions with ROS and mixed disulfides with proteins ... products of GSH oxidation are toxic for cell
- in oxidative stress the cell exports GSSG out

Vitamin E

- group of 8 substances, α-tocopherol most effective
- antioxidant of membranes (lipophilic)
- "chain-breaking" ... terminates the chain reaction of lipid peroxidation



Ascorbate (Vitamin C)

- Redox-active saccharide
- In most animals synthesized from glucuronic acid
- Vitamin for humans, other primates, bats and guinea pigs
- Deficit causes scurvy (scorbut)

Ascorbate in the body:

- Main function is pro-oxidant: cofactor of hydroxylases
 - Hydroxylation of Pro and Lys in collagen synthesis
 - Synthesis of noradrenaline from dopamine
 - Synthesis of carnitine (... role in oxidation of fat)
 - Activation of hypothalamic peptidic hormones by amidation (CRH, GRH, oxytocin, vasopressin, substance P)
- Reductant for iron: promotes its intestinal absorption
- Potentially dangerous pro-oxidant if iron sequestration impaired (hemochromatosis) (?)
- Daily need 70-100 mg, high doses p.o. excreted by urine (renal threshold cca 200 mg/24 hours)

• Selenium:

- Trace element (daily need 55 μg), possibility of deficiency as well as intoxication
- Component of several antioxidant enzymes (glutathione peroxidase, thioredoxin reductase) and also e.g. 5'-deiodase
- β-carotene (provitamin A)
 - Antioxidant only in the skin
 - Precursor for biosynthesis of:
 - Retinal ... vision
 - Retinoic acid ...regulator of gene expression, cellular growth and differentiation

Where RONS are beneficial: I. Active centers of some enzymes

- Monooxygenases (cytochromes P450):
 - Detoxication of drugs, synthesis of steroid hormones and bile acids, NO synthases

$$HC \longrightarrow CH$$
 $HC \longrightarrow CH$
 $HC \longrightarrow CH$

Mechanism: oxidation by ferryl intermediate

$$Fe^{III} + RH + 2e^{-} + O_{2} + H^{+} \rightarrow Fe^{III} - OOH^{-}RH$$

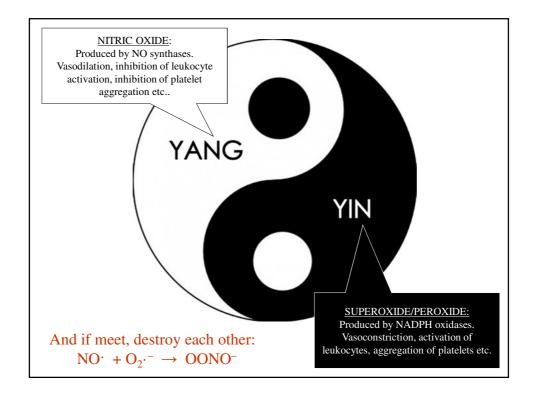
 $Fe^{III} - OOH^{-}RH + H^{+} \rightarrow Protein^{\bullet +} - Fe^{IV} = O$ $RH + H_{2}O$

Protein•+-Fe^{IV}=O RH → Protein-Fe^{IV}-OH R• →
$$\rightarrow$$
 Fe^{III} + ROH

Where RONS are beneficial: I. Active centers of some enzymes

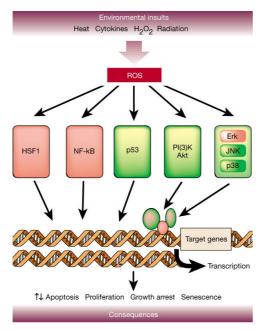
- Monooxygenases (cytochromes P450)
- Ribonucleotide reductase (...DNA synthesis)
- Synthesis of prostanoids (enzymatic lipoperoxidation)
- Useful heme peroxidases:
 - Thyreoid peroxidase:

$$I^- + H_2O_2 + 2H^+ \rightarrow I^+ + 2H_2O$$
, I^+ iodinates thyreoglobulin


- Myeloperoxidase of neutrophils
- Lactoperoxidase in milk, respiratory tract mucus and saliva:

$$SCN^- + H_2O_2 \rightarrow OSCN^- + H_2O$$

(hypothiocyanate OSCN- is toxic to bacteria)


Where RONS are beneficial: II. Signaling

- E.g. nitric oxide, NO:
 - Smooth muscle relaxation in blood vessels, gastrointestinal tract, corpus cavernosum penis
 - neurotransmitter/ neuromodulator in CNS, function in synaptic plasticity, learning and memory
 - Inhibition of adhesion and aggregation of platelets,
 - Inhibition of adhesion of leukocytes
 - (etc.)

Concept of redox signaling

- H₂O₂ as intracellular signaling molecule
- Redox environment inside the cell determined mostly by ratios GSH/GSSG and NADH/NAD
- Redox sensors on proteins:
 - critical -SH groups
 - Fe-S centers
- Targets of redox signaling:
 - transcription factors
 - protein kinases and phosphatases

Redox signaling

- Oxidative stress activates certain protein kinases and transcription factors
- Outcome: e.g. stimulation of proliferation, differentiation, cellular senescence (ageing), apoptosis...
- Actions of ROS/antioxidants in the cell can be very specific.

(T. Finkel & N.J. Holbrook, Nature 408 (2000), 239-247)

Antioxidant defence V **Stress response**

Oxidation or nitrosylation of sensor -SH

Transcription factors (NFκB, Nrf-2...): activation, nuclear translocation

Induction of gene expression:

- chaperones (heat shock proteins)
- antioxidant enzymes
- metallothionein
- hemoxygenase 1

... → more resistant to further oxidative stress

Where RONS are beneficial: III. Phagocytosis

- Neutrophils, eosinophils, monocytes, macrophages, microglia
- Often the target particle needs to be marked (coated with opsonins)
- Phagocyte tasks:
 - Recognize
 - Engulf
 - Kill
 - Digest

© 1998 Garland Publishing

Neutrophilic granulocyte (polymorphonuclear)

- Segmented nucleus
- Primary (azurophilic) granules: lysozyme, defensins, myeloperoxidase, proteases
- Specific (secondary) granules: NADPH oxidase, cobalophilin, lactoferrin, lysozyme, collagenase
- Tertiary granules: gelatinase and other enzymes

Fig.:http://blausen.com

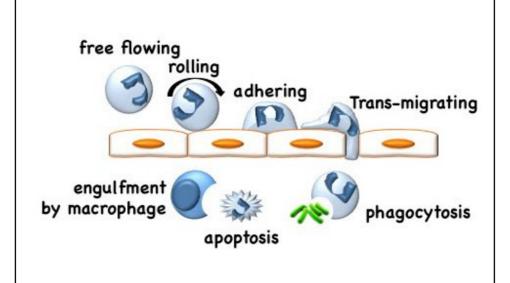


Fig.: http://walchecklab.umn.edu/_/rsrc/1417821135388/research-interests/neutrophil-recruitment

Activation of a phagocytic cell: **Respiratory burst**

- Dramatic increase in consumption of oxygen (for superoxide production, not respiration)
- Dramatic increase in consumption of glucose (for the pentose cycle – produces NADPH for NADPH oxidase)

NADPH oxidase

- Membrane enzyme producing a superoxide flux outwardly or into a phagosome.
- Catalyzes reaction:

NADPH +
$$2O_2 \rightarrow NADP^+ + H^+ + 2O_2 \cdot ^-$$

- Latent in resting cell, assembles on the cell membrane from 6 subunits during phagocyte activation.
- Necessary for an ability to kill some kinds of engulfed bacteria (hereditary deficit: chronic granulomatous disease)
- Similar enzymes are present also on the endothelial and many other non-phagocytic cells

Myeloperoxidase

- 2-5% of total protein in neutrophils
- Hemoprotein that gives pus its green tinge
- Non-specific peroxidase, in the body catalyzes reaction:

$$Cl^- + H_2O_2 + H^+ \rightarrow HClO + H_2O$$

• Deficit in humans is common (1 in 2,000-4,000) and is not severe

Hypochlorous acid

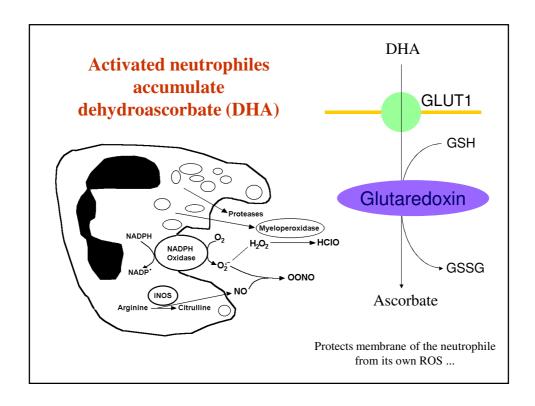
- Weak acid (pK_a = 7.5; HClO \leftrightarrow ClO⁻ + H⁺)
- In acidic medium readily decomposes to chlorine gas:

$$HClO + H^+ + Cl^- \leftrightarrow Cl_2 + H_2O$$

- Strong oxidizing agent:

2HClO +
$$2e^- \rightarrow Cl_2 + 2e^- \rightarrow 2 Cl^-$$

- Reaction with Fe²⁺ or superoxide generates hydroxyl radical:


- With organic amines gives chloramines:

$$R-NH_2 + HCIO \rightarrow R-NH-C1 + H_2O$$

Further neutrophil weapons

- Powerful proteolytic enzymes: elastase, collagenase, cathepsin G, gelatinase etc.
- Lysozyme: cleaves polysaccharide of Gram+ bacterial cell wall
- Lactoferrin: binds iron to make unavailable for bacteria
- Defensins: cationic proteins forming channels in bacterial cell membrane
- NETs (neutrophil extracellular traps): fibers of DNA and serine proteases, catch bacteria extracellularly

RONS generators and other weapons can synergize: e.g.. HClO inhibits α1-antitrypsin

Neutrophil ROS in (dental) medicine

- Hydrogen peroxide:
 - 3 % H₂O₂ is used for wound disinfection, and treatment of acute gum inflammation
- Sodium hypochlorite NaClO (,Savo'): Root canal treatment (endodontics)
- Chloramine-T:
 General disinfectant in hospitals...