Dental composites

Chemistry, composition, properties

Antonin Tichy, Pavel Bradna

Institute of Dental Medicine, First Faculty of Medicine and General University Hospital in Prague, 2022

What are composites?

<u>Heterogeneous</u> materials composed of a matrix (e.g. polymeric) and particulate or fibrous fillers/reinforcing particles

Main components:

- matrix
- fillers treated with coupling agents (bonds, sizings)

Types of composites

- Particulate composites restorative composites, fillings, luting, build-ups material, temporary crown and bridge, sealers, etc.
- Fibrous composites <u>"Fibre Reinforced</u> <u>Composites</u>" (FRC) glass/carbon/ aramide posts, splints

Example of longituidal fibre orientation

Example of transverse fibre orientation

Role of individual components:

<u>Matrix</u> (consists of monomers, initiators, inhibitors etc.)

- transfers mechanical load on reinforcing fillers,
- stabilizes distribution of fillers in matrix and protects them against environmental degradation.
- Filler act as a "load carrier"

Coupling agents - increases wetting of filler with a matrix,

- "conect" surface of filler particles with a matrix via chemical bond,
- enable stresses to be transferred on the fillers,
- facilitate particle dispersion in monomers increases filler load.

Monomers

How to decrease polymerizatiom shrinkage???

1. To increase molecular mass of monomers Less number of double bonds in the volume unit

2.To prepare monomers with a rigid structure Less difference molar volume before and after polymerization

Typical structure

Typical dimethacrylate monomers (resins)

1. BIS-GMA 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy) phenyl]propane (Bowen monomer, 1955)

higher molecular weight – high boiling point, no odor

2. Urethane dimethacrylate (UDMA) (2,2,4trimetylhexametyle-bis-(2-carbamoyl-oxyetyl)dimethacrylate)

3. Triethylene glycoldimethacrylate TEGDMA (low viscosity diluent)

n=1 ethylene glycoldimethacrylate (EGDMA)

4. 1,6 hexane dioldimethacrylate

Initiating systems and composite classification and according to initiation reactions

- Light cured (LC)
- Chemically cured
- Dual cured a combination of light and a chemical activation

Note:

Heat cured - very rarely (microwave polymerization of some denture materials)

Light cured materials

(composite materials, adhesives)

One component system

light initiating system: <u>camphorquinone (CQ) max</u> <u>absorption app. 470 nm</u>, <u>amine coinitiators</u>, inhibitors

Other photoinitiators: <u>1-phenyl-1,2 propandion (PPD, absorption at app. 420</u> nm), yellow

Only in combination with an amine coinitiator

<u>Lucirin TPO:</u> 2,4,6-trimethylbenzoyldiphenylphosphine oxide, absorption at app. 370-390 nm), slightly

Doesn't need an amine coinitiator

Ivocerin: bis(4-methoxybenzoyl)diethyl german, absorption maximum at. 363 and 419 nm,

slightly yellow

Doesn't need an amine coinitiator

Due to enhanced efficacy of Lucirin TPO and Ivocerin their lower concentrations are used - less negative effect on composite color

Modern materials contain usually a mixture of CQ, PPD, Lucirin TPO or Ivocerin

Amine coinitiators:

(N,N'-dimethylamino)ethylbenzoate (EDMAB) $_{H_{3}C_{N}}$

(N,N'-dimethylamino)ethylmethacrylate (DMAEMA)

Phenolic inhibitors:

<u>Hydroquinone</u> (HQ), <u>Methoxy</u> Phenol 4-MP,

2,6-di-tertbutyl-4-methylphenol (<u>B</u>utylated <u>H</u>ydroxy-<u>T</u>oluene - BHT).

Chemically cured materials

<u>composite materials, adhesives, resin cements</u>, build-ups, temporary crown and bridge systems - where sufficient light penetration can not be garanteed

Two-component systems:

<u>Paste - paste systems:</u> base paste (amine) and catalyst paste (DBP),

<u>Powder - liquid</u> systems (old fashioned).

Fillers (particulate):

50 - 90 wt. % of silanated ground Ba-Sr glass, synthetic Zr glass (Zr-silica), pyrogenic silica SiO₂ (silica), pigments

Coupling agents:

$$\begin{array}{c} O & O & -CH_{3} \\ II \\ H_{2}C = C - C - O - CH_{2} - CH_{2} - CH_{2} - Si - O - CH_{3} \\ I \\ CH_{3} & O - CH_{3} \end{array}$$

 γ -methacryl-oxypropyltrimethoxysilane (A 174)

Treated surface

Untreated surface

Classification according to the filler particle size

<u>1. Conventional/traditional/macrofilled</u> composites (quartz, glass, particle size 5 - 50 µm)

Quartz - extremely hard, pronounced abrasion, surface staining

Filler load 50-65 wt. %

Polydisperse mixture of various particle size - to fill the whole volume with filler particles

<u>2. Microfilled composites</u> - a) heterogeneous: filled with 1-50 μm ground "prepolymer" (composite of ~0.04 μm pyrogenic SiO₂) in a matrix filled with similar SiO₂, b) homogeneous: filled with only SiO₂ particles ~0.04 μm.

<u>Advantages</u>: highly aesthetic, easy to polish, high gloss

App. 60 % of filler particles

<u>Disadvantages</u>: low mechanical strength

3. Hybrid composites

- ground glass "small" particle size 1 5 µm,
- pyrog. SiO₂ (0.04 μm) 0-3 wt. % (to adjust thixotropy and not stickening properties

Filler load ~ 70 wt. %

<u>Advantges</u>: universal (high mechanical strength) <u>Disadvantages</u>: not so aesthetic, poor polishability

4. Microhybrid composites

ground glass, size below 1 μm
amorphous SiO₂ 5-10 wt. %

Filler load 70 - 75 wt. %

5. Nanocomposites/nanohybrid composites

1. Spherical nanoparticles \sim 10 – 40 nm and their clusters (agglomerates) of particle size 1 – 3 μm

2000x

2. Another example: mixture of app. 200 nm particles and their agglomerates

6000x

<u>Advantages</u>: Increased filler load (80 wt. %) Decreased polymerization shrinkage Excelent aesthetic properties, gloss and polishability Low abrasion

2022 Disadvantages: Higher price

Advantages of composite materials

- Tooth coloured
- High mechanical resistance
- Low solubility in the oral cavity
- Good biological properties

Disadvantages:

- Time consuming working protocol
- Not adhering to the tooth tissues
- Polymerizatin shrinkage
- No self-protecting effect
- High price

Classification of composites according to the particle size

composite	Filler	Particle size [µm]
Traditional/Conventi onal (macrofilled)	Ba-Sr glass, quarz	5 – 50
Microfilled • Heterogeneous	1. Spliter ^w – prepolymerized ground with amorphous SiO ₂	1–50
(1+2)Homogeneous (2)	(d=0.04 µm) "organic filler" 2. amorphous SiO ₂	0.04
Hybrid	1. Ba-Sr glass	1-5
	2. amorphous SiO ₂	0.02-0.04
Microhybrid	1. Ba-Sr glass, syntetic Zr-Si (zirconia-silica)	<1
	2. amorphous SiO ₂	0.02-0.04
Nanocomposites	1. nanoparticles	~ 0.10 - 0.04
	2. nanoclusters — nanoparticle agglomerates	1 – 3

Filler load app. 55-85 wt %, amorphous Si0 $_2$ app. 3-10 wt. % to control thixotropic properties

Literature:

- Craig RG., Powers JM., Wataha JC: Dental Materials, Properties and Manipulation, Mosby
- Powers JM., Sakagushi RL: Craig´s Restorative Dental Materials, Mosby
- Gladwin M., Bagby M.: Clinical Aspects of Dental Materials, Theory, Practice and Cases, Lippincott Williams/Williams
- Anusavice KJ.: Phillips' Science of Dental Materials, Saunders

Actual edditions of the text books