Date Group

Lab report form for the practical lesson on biochemistry

Topic: Spectrophotometry

1. Spectrophotometric estimation of molar concentration of food dyes

Principle:

(Briefly explain the core principle of photometry, including the terms transmittance, absorbance, and Lambert-Beer law)

1.1. Absorption maximum of stock solution of food dye (demonstration) Results:

1.2. Estimation of molar concentration of food dyes in given sample Results

Dye:

Sample No:

Sample absorbance:

Test tube	Deionized	Solution of food dye		Molar	Absorbance
No.	water			concentration	А
	(ml)	(ml)	Note:	(µmol/1)	
1	-	2	Stock solution		
2	1	1	From tube 1		
3	1	1	From tube 2		
4	1	1	From tube 3		
5	1	1	From tube 4		
6	1	1	From tube 5		

Evaluation

A) Calibration graph method:

Plot the measured standard absorbances against standard concentrations, use the graph for reading concentration of the unknown sample, sign it and attach to this report.

c_{sample} =

B) Calibration factor method:

f =	c _{sample} =
f5	
f_4	
f_3	
\mathbf{f}_2	
f_1	

C) Standard sample method:

Standard:	$A_{st} =$	$c_{st} =$	Calculation:
Sample:	$A_{sa} =$	c _{sample} =	

Conclusion:

(Summarize the results and compare precision of all three methods)

2. Preparation of coordination compounds and measurement of their spectral curves in the visible spectral range

2.1. Complexes of Cu²⁺

Equations:

Results:

Compound	Color of substance	Color of solution	Measured λ of absorbed light
CuSO ₄			
	х		
	Х		

2.2. Complexes of Fe³⁺

Equations:

Results:

Compound	Color of substance	Color of solution	Measured λ of absorbed light
FeCl ₃			
	х		
	х		