

What is ageing

- Progressive loss of physiological capacity in the cells, increase in susceptibility to various diseases
- Not a disease as such
- Looks similar in various animals, but proceeds with variable speed ... universal process
- Distinguish:
 - Average life expectancy:
 - 2000: men 71.7 years, women 78.4 years
 - 1920: men 47 years, women 49.6 years

- Maximum lifespan:

• For humans 115-120 years, does not change

What is ageing

- No evidence for program obtained so far.
- Stochastic process, unlike embryogenesis not directly programmed by genome
- On molecular level: inability to keep fidelity of biomolecules indefinitely
 - "systemic molecular disorder" (Hayflick)
- Consequence of accumulation of errors and organismal responses to them

Sources of errors/damage to biomolecules

- Errors in copying/expressing genomic and epigenomic information
- Biological side-reactions ... spontaneous, permanent, nonenzymatic, exergonic processes
 - -Oxidations
 - -Glycations

Ionising radiation:

Hydroxyl radical originates from ionisation of water:

 $H_2O + h\nu \rightarrow H^+ + OH^-$

Reactive oxygen species in the body:

One-electron reduction of oxygen (mitochondria, NADPH oxidase) forms superoxide O₂⁻⁻

Dismutation of superoxide produces hydrogen peroxide: $O_2^{--} + O_2^{--} + 2 H^+ \rightarrow O_2 + H_2O_2$

Fenton reaction with Fe or Cu converts peroxide to hydroxyl radical:

 $H_2O_2 + Fe^{2+} \rightarrow OH^- + OH^- + Fe^{3+}$

- Chemistry too varied some damage cannot be repaired
- Limited amount of energy is available for antioxidant defence and repair
- ROS also essential in cell signaling and host defence!

Effects of glycation (dicarbonyl stress):

- Cross-links of extracellular proteins \rightarrow stiffness
- Protein modifications → proteasome ↓, misfolded proteins ↑, toxic aggregates
- Respiratory chain modification $\rightarrow \text{ROS}\uparrow, \text{ATP}\downarrow$
- DNA modification → mutations, genomic instability
- RAGE (receptor for AGE) \rightarrow inflammation
- BUT: methylgloxal also needed for induction of Nrf2 in stress response!

Ageing at cellular/tissue level

- Mitochondrial dysfunction
- Consequences of DNA damage
- Cellular senescence
- Alteration of epigenome
- Collapse of proteostasis
- Inflammation

Mitochondrial dysfunction

- Theoretical considerations:
 - Semiautonomous organelles with their own mtDNA
 - MtDNA:
 - Many copies per cells
 - Replication independent on cell cycle, no recombination
 - Somatic cell lacks mechanisms for selection of intact copies
 - Mitochondria produce ROS that can damage mtDNA
 - Life spans somehow related to metabolic rate

Telomerase is <u>not</u> the secret of eternal youth!

- Most cells of human body do not need telomerase (divide infrequently or not at all)
- Stem cells, germinal and activated immune cells possess telomerase
- Fibroblasts and epithelial cells do not regularly reach the Hayflick limit in vivo
- Murine somatic cells express telomerase, but still lifespan of mouse is much shorter than human
- K.O. of mouse telomerase gene: normal lifespan untill the 3rd generation, then accelerated ageing, occurence of human type cancer (carcinomas)

Ageing epigenome

- Gene regulation: transcription factor binding, DNA methylation, histone marks, nucleosome positioning, non-coding RNA...
- Dysregulation with age, marks become lost or more random
- \rightarrow Altered induction of genes
- \rightarrow General loss of heterochromatin
 - Ectopic expression
 - Activation of transpozons

Collapse of proteostasis

- Ability to keep healthy proteome by synthesis, chaperoning, and removal
- Theoretical considerations: Model of Kirkwood and Kovald (1995):
 - Some ROS always escape mitochondria and damages other cellular structures
 - Prevention of ROS formation and repair systems are never 100 % effective
 - Slightly damaged mitochondria produce less energy than the cell would need
 - At some point lack of ATP causes sudden collapse of proteostasis in cytosol

Collapse of proteostasis

- Late event (last third of life) but dominant in ageing
- Oxidative protein damage ↑
- Synthesis of proteins ↓
- Degradation \downarrow
- Chaperones become more occupied with damaged proteins
- ...Accumulation of misfolded proteins and toxic aggregates

Disposable soma theory (throw-away body)

- **Bacteria:** do not age but for the price of high selection and mortality
- Higher organisms:
 - Specialisation

GAMETS: haploid (,defect sieve'), huge redundance and high selection, but DNA passes to further generation.

SOMA: diploid, longer-lasting, but mortal structure, DNA not intended for further generation.

Evidence for trade-off between longevity and fecundity

- Lifespan of Drosophila can double over ten generations of selective breeding:
 - Associated with later onset of reproduction, number of eggs remains the same
- Genealogical records of British aristocracy:
 - The longest-lived aristocrats tended to have had the greatest trouble with fertility

Antioxidant dietary supplements can even be harmful!

- Large meta-analysis of total mortality in 68 studies on administration of antioxidant supplements (232 606 participants, 385 publications):
 - $-\beta$ -carotene, vitamin A and vitamin E significantly **increase** mortality
 - Vitamin C and selenium have no effect

(Bjelakovic G et al., JAMA 2007; 297: 842-857)

Why the antioxidants do not help or even harm ???

- High doses are ineffective
- Suppress the beneficial oxidations
 - Inhibition of the stress response
 - Impair defence against infection, cancer, physiologic apoptosis?
- Have other effects in addition to antioxidant
 - tocopherols: anti-inflammatory
 - $-\beta$ -carotene: co-carcinogen (together with smoking or environmental toxins)

Caloric restriction extends lifespan

- Restricted amount of food with preserved quality
- Works also in higher animals with constant temperature (e.g. mice, rhesus monkeys)
 - Mouse lives for 28 months, but dietary restriction to 25% extends its lifespan to 47 months
- Really extends the maximum lifespan, decreases markers of oxidative stress, occurence of cancer, and slows down ageing

HORMESIS

• Mild stress (heat, cold, irradiation, ischemia, oxidants) enhances resistance to subsequent, more severe stress

(...what won't kill you, will make you strong...)

- Mechanisms: adaptive homeostasis/stress response
- Example in humans: physical activity
 - $-\uparrow ROS \rightarrow stress response$
 - $-\downarrow$ ATP \rightarrow stimulates biogenesis and renewal of muscle mitochondria

- ...

Conclusion?

- Immortality and eternal youth are not at hand. Ageing appears to be inevitable consequence of intrinsic limits of body maintenance
- But the rate of ageing can be manipulated:
 - Balanced diet
 - Caloric restriction
 - Physical activity
- Future ?
 - Senolytics, stem cells, stimulators of autophagy, CR mimetics ... ?

