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What is ageing
• Progressive loss of physiological capacity in the cells, 

increase in susceptibility to various diseases

• Not a disease as such

• Looks similar in various animals, but proceeds with
variable speed … universal process

• Distinguish:

– Average life expectancy:

• 2000: men 71.7 years, women 78.4 years

• 1920: men 47 years, women 49.6 years

– Maximum lifespan:

• For humans 115-120 years, does not change

To explain ageing, at least 28 theories formulated

Accumulation of
damage. 
Entropy.

Active program. 
Directed by genes.
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What is ageing

• No evidence for program obtained so far.
• Stochastic process, unlike embryogenesis

not directly programmed by genome
• On molecular level: 

inability to keep fidelity of biomolecules
indefinitely

„systemic molecular disorder“ (Hayflick) 
• Consequence of accumulation of errors and 

organismal responses to them

Genes related to longevity

• Stress resistance (anti-heat shock, 
antioxidant defence…)

• Energy metabolism (insulin signaling, 
caloric intake, mitochondrial function…)

• Mutation prevention and repair
• Hormonal homeostasis
• Control of cell proliferation
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Sources of errors/damage to 
biomolecules

• Errors in copying/expressing
genomic and epigenomic
information

• Biological side-reactions … 
spontaneous, permanent, non-
enzymatic, exergonic processes
– Oxidations
– Glycations

Ionising radiation:
Hydroxyl radical originates from ionisation of water:

H2O   + hν →   H·  + OH·

Reactive oxygen species in the body:

One-electron reduction of oxygen (mitochondria, 
NADPH oxidase) forms superoxide O2

·–

Dismutation of superoxide produces hydrogen peroxide: 
O2

·– + O2
·– +  2 H+ →   O2 +  H2O2

Fenton reaction with Fe or Cu converts peroxide to 
hydroxyl radical:
H2O2 + Fe2+ →   OH– +   OH· +  Fe3+
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Oxidative damage to biomolecules

• Lipids: peroxidation of polyunsaturated fatty
acids in membranes

• Proteins: oxidation of -SH, carbonylation of
-NH2, hydroxylation/nitrosylation of aromatic 
amino acids, cross-linking, degradation

• Nucleic acids: single/double strand breaks, 
hydroxylation of bases ... mutation, 
cancerogenesis…

Why is it difficult to completely
prevent/repair damage by ROS?

• Chemistry too varied – some damage
cannot be repaired

• Limited amount of energy is available for
antioxidant defence and repair

• ROS also essential in cell signaling and 
host defence!
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Glutathione
peroxidase

H2O2

H2O

Glutathione
reductase

GS-SG

GSH
Transhydrogenase

NADPH+H+

NADP+

NADH+H+

NAD+

Pentose cycle

O2
·–

Superoxide dismutase

Reduced glutathione
(GSH)

Oxidised glutathione
(GS-SG)

ATP

Antioxidant defence V

Stress response
Oxidation or nitrosylation of sensor -SH 

Transcription factors (NFκB, Nrf-2…):
activation, nuclear translocation

Induction of gene expression:
• chaperones (heat shock proteins)
• antioxidant enzymes
• metallothionein
• hemoxygenase 1

…→ cell more resistant to further

oxidative stress

…→ propagation of inflammation
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Adaptive
homeostasis

• Endogenous ROS are 
critical mediators of
cellular adaptation to 
various kinds of stress. 

• Redox signaling: 
Oxidative stress activates
protein kinases and
transcription factors

• …Resistance to stressors, 
regulation of cell 
proliferation, apoptosis…

(T. Finkel & N.J. Holbrook, Nature 408 (2000), 239-247)

Protein Glycation/Carbonyl Stress

Maillard reaction. (According to Janebová et al., Remedia 1999).

Reactive carbonyls (aldehydes) 

from lipid peroxidation:
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Methylglyoxal:

Toxic byproduct of glycolysis

Direct source of AGEs

(advanced glycation end products)

Methylglyoxal

Protein

Arg
Arg

+

Protein
AGE

AGE

Glyoxalase 1 (+ GSH), 2

D(-)-Lactate

Pyruvate

Effects of glycation (dicarbonyl stress):
• Cross-links of extracellular proteins→ stiffness

• Protein modifications → proteasome ↓, 
misfolded proteins ↑, toxic aggregates

• Respiratory chain modification → ROS↑, ATP↓

• DNA modification → mutations, genomic
instability

• RAGE (receptor for AGE) → inflammation

• BUT: methylgloxal also needed for induction of
Nrf2 in stress response! 
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Ageing at cellular/tissue level

• Mitochondrial dysfunction

• Consequences of DNA damage

• Cellular senescence

• Alteration of epigenome

• Collapse of proteostasis

• Inflammation

Mitochondrial dysfunction

• Theoretical considerations:
– Semiautonomous organelles with their own mtDNA

– MtDNA: 
• Many copies per cells

• Replication independent on cell cycle, no recombination

• Somatic cell lacks mechanisms for selection of intact
copies

– Mitochondria produce ROS that can damage
mtDNA

– Life spans somehow related to metabolic rate
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Mitochondrial
genome

Mitochondrial theory of ageing: 
Vicious circle of oxidative damage

Production of oxygen radicals in mitochondria

Accumulation of mtDNA mutations with age

Respiratory chain deficiency

Heart failure, muscle weakness, diabetes mellitus, 
dementia, neurodegeneration …
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Mitochondrial theory of ageing: 
Vicious circle of oxidative damage

Production of oxygen radicals in mitochondria

Accumulation of mtDNA mutations with age

Respiratory chain deficiency

Heart failure, muscle weakness, diabetes mellitus, 
dementia, neurodegeneration …

Probably true in some inherited
mitochondriopathies. 

But in physiological ageing?

Mitochondrial dysfunction

• Mitochondrial number and function
declines with age

• Point mutations and deletions in mtDNA
do accumulate

• …but due to replication errors by 
mitochondrial DNA polymerase γ, rather
than by ROS

• Mosaic OXPHOS deficiency develops
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Clonal expansion of mutated mtDNA molecules
leads to mitochondrial dysfunction in ageing

Cell Metabolism 2017 2557-71DOI: (10.1016/j.cmet.2016.09.017) 

Copyright © 2017 Elsevier Inc. Terms and Conditions

Most of DNA damage is endogenous

• Depurination

• Spontaneous deamination of cytosine

• Oxidative modification of bases (G most sensitive)

• Reaction of bases with carbonyls (aldehydes from lipid 
peroxidation and glycation)

• Non-enzymatic alkylation (mostly methylation)

• Single- and double-strand breaks
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How much damage?
• Abasic sites (depurination, also by ROS!):

2,000-10,000 purines lost per cell and day

Possibly steady state 50,000-200,000 lesions per liver cell 

• Hydrolytic deamination:

100-500 cytosines deaminated per cell and day, 

(for methyl-C more rapid and less effectively repaired)

• Formation of 8OHdG:

Cumulative damage to DNA (8OHdG excreted into urine):      
… 140-200 G oxidized per cell and day

Steady state 0.07 - 145.25 8OHdG per 106 nt

… 168 - 348,000 8OHdG per cell (…cca 1:105 ?)

R. De Bont & N. van Larebeke: Endogenous DNA damage in humans: a review of quantitative data. 
Mutagenesis (2004) 19, 169-185.
B. Halliwell & J.M.C. Gutteridge: Free Radicals in Biology and Medicine, 4th edition, Oxford University 
Press 2007

Double-strand DNA breaks
• Rare (10-50 per cell 

and day?)

• Dangerous: repair by 
NHEJ alters sequence

• If not repaired:         
→ DNA Damage
Response (DDR) 
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DNA Damage Response (DDR)

Persistent

double-strand breaks

p53 
protein

Halts cell cycle

to provide time

for repair

Apoptosis

DNA Damage Response (DDR)

Possible outcomes:

Cell survived, can

divide again

(mutated?)

….Cancer
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Risk of cancer as function of age

Figure from: B. Halliwell & J.M.C. Gutteridge: Free Radicals in Biology and Medicine, 4th edition, Oxford University Press 2007
(Original source: Free Radic. Res. Commun. (1989) 7, 122)

DNA Damage Response (DDR)

Possible outcomes:

Cell survived, can

divide again

(mutated?)

Cell eliminated

by apoptosis

….Cancer
….(Stem) cell 
depletion, atrophy
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Hayflick limit
• Human fibroblast in culture divide no more than 50-

70 times, then enter replicative senescence

• Applies to all cultured somatic cells, but not to 
transformed cells or cancer cells

• Cells from an elderly donor divide fewer times

© 1998 GARLAND PUBLISHING

Telomerase
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Telomerase is not the

secret of eternal youth!

• Most cells of human body do not need telomerase
(divide infrequently or not at all)

• Stem cells, germinal and activated immune cells
possess telomerase

• Fibroblasts and epithelial cells do not regularly reach
the Hayflick limit in vivo

• Murine somatic cells express telomerase, but still
lifespan of mouse is much shorter than human

• K.O. of mouse telomerase gene: normal lifespan untill
the 3rd generation, then accelerated ageing, occurence
of human type cancer (carcinomas)  

Fig.: https://healthjade.com/telomere/

Real role of telomeres in ageing
• (TTAGGG)n…very sensitive to oxidation

• If telomere broken, shelterin inhibits DNA repair→ DDR 

• Telomeres are sensitive detectors of oxidative stress!
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DNA Damage Response (DDR)

Possible outcomes:

Cell survived, can

divide again

(mutated?)

Cell eliminated

by apoptosis
Cell survived, 

but growth

arrested

….Cancer

….Senescence 

….(Stem) cell 
depletion, atrophy

Cellular senescence
• Stable growth arrest, but cells survive and 

change

• SASP (Senescence-associated secretory
phenotype): proinflammatory factors

• Role in development and wound healing

• Accumulation in aged tissues (1-5%) 
detrimental
– Organ dysfunction

– Can support cancer growth

• Senolytics (drugs that kill senescent cells)?     
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Ageing epigenome
• Gene regulation: transcription factor binding, 

DNA methylation, histone marks, 
nucleosome positioning, non-coding RNA…

• Dysregulation with age, marks become lost
or more random

• → Altered induction of genes

• → General loss of heterochromatin
• Ectopic expression

• Activation of transpozons

Collapse of proteostasis

• Ability to keep healthy proteome by synthesis, 
chaperoning, and removal

• Theoretical considerations: Model of Kirkwood and 
Kovald (1995):

– Some ROS always escape mitochondria and 
damages other cellular structures

– Prevention of ROS formation and repair systems
are never 100 % effective

– Slightly damaged mitochondria produce less
energy than the cell would need

– At some point lack of ATP causes sudden
collapse of proteostasis in cytosol
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Collapse of proteostasis

• Late event (last third of life) but dominant in ageing
• Oxidative protein damage ↑
• Synthesis of proteins ↓ 
• Degradation ↓
• Chaperones become more occupied with damaged

proteins
• …Accumulation of misfolded proteins and toxic

aggregates

Collapse of proteostasis: 

Limits of autophagy

• Long-lived proteins, organelles removed by autophagy
• Digestion not complete…postmitotic cells accumulate

‚garbage‘…lysosomal/mitochondrial isufficiency

Fig.: http://cpmcnet.columbia.edu/dept/gsas/anatomy/Faculty/Kessin/autophagy.html
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Ageing as a catabolic insufficiency
Incomplete digestion in lysosomes, release of Fe from mito, 

ROS, lipid peroxidation, cross-linking, aggregation and 
polymeration of oxidised proteins and lipids

↑ LIPOFUSCIN (in lysosomes)
In cytosol defective mito and 

indigestible protein aggregates

Loss of hydrolases delivered to lipofuscin-loaded lysosomes
Damaged and hypertrophic (giant) mito not degradable

Less ATP, more ROS, damaged mito & lysosomes can
initiate apoptosis…

+

Fig.: http://www.uni-mainz.de/FB/Medizin/Anatomie/workshop/EM/EMtLyso.html

Inflammaging

• Increased baseline inflammation in ageing

• Reasons?

– Secretions of senescent cells (SASP) and 
adipose tissue

– ↑ mito ROS → stress response becomes
permanent

– Altered regulation of stress-related genes

– AGE-RAGE interaction

– …
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Life renewal in nature

• Continuous cell division

• Genetic recombinance

• Selection against mutations

… Our highly specialised neuronal, 

skeletal and cardiac muscle cells are 

the most sensitive to ageing

… The ultimate limit of our lifespan

… Every organism dependent on 

postmitotic cells is mortal!

Is ageing inevitable in nature ?

Hydra (Cnidaria)

• Simple body plan, rapid and 
complete renewal from stem 
cells

• Nerve net, no recognizable
brain or muscles

• Mostly asexual reproduction
(budding)

• No signs of senescence or
mortality in captivity

Even if achieved in humans by 

engineered stem cells, 

replacement of neuronal cells

will change mind and wipe

memories…
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Evolution of ageing

Could ageing evolve as a programmable trait to 

promote evolutionary change by accelerating

turnover of generations?

(August Weissman, 1891) 

Ageing is rare in nature!

• Most wild animals never reach senescence 
….No selection against mutations with negative effects
late in the lifespan

(T.B.L.Kirkwood & S.N. Austad, Nature 408 (2000), 233-238)
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Disposable soma theory

(throw-away body)
• Bacteria: do not age but for the price of high

selection and mortality
• Higher organisms:

– Specialisation

GAMETS: haploid (‚defect sieve‘), huge
redundance and high selection, but DNA passes to 
further generation.

SOMA: diploid, longer-lasting, but 
mortal structure, DNA not intended for
further generation.

Disposable soma theory:
How long should the body be maintained?

• Evolution governed by success in 
reproduction ! 

• Trade-off between body maintenance and 
reproduction (metabolic energy limited!)

– Extrinsic mortality high: better to invest in 
reproduction (r-strategy)

– Extrinsic mortality low: better to invest in 
maintenance (K-strategy) 
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Catastrophic senescence: Pacific salmon

http://www.usgs.gov/features/lewisandclark/ChildrenWebSites.html

Animals living longer than predicted by ‚rate-of-living‘ theory :

(relationship lifespan – oxygen consumption)

• Shell

• Wings

• Advanced brain

Fig.: http://www.discovergalapagos.com/tortoise.html
http://www.ctrl-c.liu.se/ftp/images/animals/misc/*.*

http://www.african-safari-pictures.com
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Evidence for trade-off between
longevity and fecundity

• Lifespan of Drosophila can double over ten 
generations of selective breeding:

– Associated with later onset of reproduction, 
number of eggs remains the same

• Genealogical records of British aristocracy:

– The longest-lived aristocrats tended to have
had the greatest trouble with fertility 

Theory of antagonistic pleiotropy

• Genes providing
advantage for
reproduction, but 
deleterious later in life

• Examples in humans:

– Huntington disease

– Hemochromatosis

(T.B.L.Kirkwood & S.N. Austad, Nature 

408 (2000), 233-238)
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Good defence against infection in youth
Chronic inflammation/oxidative stress later ? 

Nick Lane: Oxygen. The Molecule that made the World. Oxford University Press 2002

Antioxidants as elixirs of youth ? 

• Vitamin E (tocopherol)

• Vitamin C (ascorbate)

• β-carotene

• Selenium

Fig.: http://www.osel.cz
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Antioxidant dietary supplements can
even be harmful!

• Large meta-analysis of total mortality in 68 
studies on administration of antioxidant 
supplements (232 606 participants, 385 
publications):

– β-carotene, vitamin A and vitamin E 
significantly increase mortality

– Vitamin C and selenium have no effect

(Bjelakovic G et al., JAMA 2007; 297: 842-857)

Why the antioxidants do not help
or even harm ???

• High doses are ineffective
• Suppress the beneficial oxidations

– Inhibition of the stress response
– Impair defence against infection, cancer, 

physiologic apoptosis?   

• Have other effects in addition to antioxidant 
– tocopherols: anti-inflammatory
– β-carotene: co-carcinogen (together with

smoking or environmental toxins)



29

Caloric restriction extends lifespan
• Restricted amount of food with preserved 

quality

• Works also in higher animals with constant 
temperature (e.g. mice, rhesus monkeys)
– Mouse lives for 28 months, but dietary restriction

to 25% extends its lifespan to 47 months

• Really extends the maximum lifespan, 
decreases markers of oxidative stress, 
occurence of cancer, and slows down ageing

Caloric restriction extends lifespan
• Organism „waits out“and diverts metabolic energy 

from reproduction to maintenance functions.

• Mechanisms: 
– Some suppression of IGF-I and insulin signaling

– Stimulation of autophagy

– Sirtuins – enzymes deacetylating histones, p53 etc., 
inhibited by NADH   

• CALERIE study in human volunteers:
– Improvement in cardiometabolic health, lower markers of

oxidative stress, no adverse effects on mood, sleep or sexual
function
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HORMESIS

• Mild stress (heat, cold, irradiation, ischemia, 
oxidants)  enhances resistance to subsequent, more 
severe stress
(…what won’t kill you, will make you strong…)

• Mechanisms: adaptive homeostasis/stress response

• Example in humans: physical activity

– ↑ ROS → stress response 
– ↓ ATP → stimulates biogenesis and renewal of

muscle mitochondria
– …

http://www.calpoly.edu/~lcimarel/know.htm

Diet rich in fruit and vegetables (optim. 5x 80 g 
daily) is associated with lower risk of

cardiovascular diseases, diabetes and certain
kinds of cancer (lung, oropharynx, pancreas, 

stomach, prostate)

?

(but we do not know why…)
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Conclusion?

• Immortality and eternal youth are not at hand. Ageing
appears to be inevitable consequence of intrinsic limits
of body maintenance

• But the rate of ageing can be manipulated: 

– Balanced diet

– Caloric restriction

– Physical activity

• Future ?

– Senolytics, stem cells, stimulators of autophagy, 
CR mimetics … ? 

No one should get old
before first getting wise


