Reactive Oxygen Species in the Body, Antioxidant Defence

MUDr. Jan Pláteník Ph.D. Ústav lékařské biochemie a laboratorní diagnostiky 1.LF UK

Reactive Oxygen Species (ROS)

- Radicals:
 - Superoxide, O2⁻⁻
 - Hydroperoxyl radical, HO₂⁻
 - Hydroxyl radical, OH-
 - Peroxyl radicals, ROO-
 - Alkoxyl radicals, RO-
- Non-radicals:
 - Hydrogen peroxide, H_2O_2
 - Hypochlorous acid, HClO
 - Ozone O₃
 - Singlet oxygen, ${}^{1}O_{2}$

Reactive Nitrogen Species (RNS) Radicals: Nitric oxide, NO: Nitric dioxide, NO₂⁻ Non-radicals: Nitrosonium, NO⁺ Nitroxyl, NO⁻ Nitrous acid, HNO₂ Dinitrogen trioxide, N₂O₃ Dinitrogen tetraoxide, N₂O₄ Nitronium, NO₂⁺ Peroxynitrite, ONOO ⁻

- Alkylperoxynitrite, ROONO

Ionising radiation: Hydroxyl radical originates from ionisation of water: $H_2O + hv \rightarrow H^{\cdot} + OH^{\cdot}$ **Reactive oxygen species in the body:** One-electron reduction of oxygen (mitochondria, NADPH oxidase) forms superoxide O_2^{-} Dismutation of superoxide produces hydrogen peroxide: $O_2^{-} + O_2^{-} + 2 H^+ \rightarrow O_2 + H_2O_2$ Fenton reaction with Fe or Cu converts peroxide to hydroxyl radical: $H_2O_2 + Fe^{2+} \rightarrow OH^- + OH^{-} + Fe^{3+}$

Where RONS are beneficial: I. Active centers of some enzymes

- Monooxygenases (cytochromes P450)
- Ribonucleotide reductase (...DNA synthesis)
- Synthesis of prostanoids (enzymatic lipoperoxidation)
- Useful heme peroxidases:
 - Thyreoid peroxidase:
 - $\rm I^-~+~H_2O_2~+2H^+\rightarrow~I^+~+~2H_2O,~I^+$ iodinates thy reoglobulin
 - Myeloperoxidase of neutrophils
 - Lactoperoxidase in milk, respiratory tract mucus and saliva:

 $SCN^- + H_2O_2 \rightarrow OSCN^- + H_2O$

(hypothiocyanate OSCN- is toxic to bacteria)

Where RONS are beneficial: II. Signaling

- E.g. nitric oxide, NO:
 - Smooth muscle relaxation in blood vessels, gastrointestinal tract, corpus cavernosum penis
 - neurotransmitter/ neuromodulator in CNS, function in synaptic plasticity, learning and memory
 - Inhibition of adhesion and aggregation of platelets,
 - Inhibition of adhesion of leukocytes
 - (etc.)

Where RONS are beneficial: III. Phagocytosis

- Neutrophils, eosinophils, monocytes, macrophages, microglia
- Often the target particle needs to be marked (coated with opsonins)
- Phagocyte tasks:
 - Recognize
 - Engulf
 - Kill
 - Digest

© 1998 Garland Publishing

Neutrophilic granulocyte (polymorphonuclear)

- Segmented nucleus
- Primary (azurophilic) granules: lysozyme, defensins, myeloperoxidase, proteases
- Specific (secondary) granules: NADPH oxidase, cobalophilin, lactoferrin, lysozyme, collagenase
- Tertiary granules: gelatinase and other enzymes

Fig.:http://blausen.com

Activation of a phagocytic cell: **Respiratory burst**

- Dramatic increase in consumption of oxygen (for superoxide production, not respiration)
- Dramatic increase in consumption of glucose (for the pentose cycle – produces NADPH for NADPH oxidase)

Myeloperoxidase

- 2-5% of total protein in neutrophils
- Hemoprotein that gives pus its green tinge
- Non-specific peroxidase, in the body catalyzes reaction:

 $\mathrm{Cl^-}\ +\ \mathrm{H_2O_2}\ +\mathrm{H^+} \rightarrow \mathrm{HClO} +\mathrm{H_2O}$

• Deficit in humans is common (1 in 2,000-4,000) and is not severe

Antioxidant defence III Sequestration of metals

• Iron/copper handling proteins:

- transferrin: binds 2 atoms Fe³⁺ (transport)
- lactoferrin: analogous to transferrin, but no Fe release (... only sequestration), leucocytes
- ferritin: H and L subunits, H is ferroxidase, Fe storage (up to 4500 atoms Fe³⁺)
- haptoglobin: binds hemoglobin in circulation
- hemopexin: binds heme in circulation
- ceruloplasmin: contains Cu, function:
- ferroxidase (export Fe from the cells)
- albumin: transport of Cu

ECT	ІСТ
Superoxide Peroxide	Saperoxide Prroxide Fe/Cu
Antioxidant enzymes & glutathione levels very low	Superoxide dismutase Peroxiredoxins Glutathione peroxidases Catalase
Sequestration of iron and copper: - Transferrin, lactoferrin - Haptoglobin - Hemopexin - Ceruloplasmin (ferroxidase) - Albumin (binds Cu)	Excess iron stored in ferritin, but some redox-active iron present

Free radicals in pathogenesis of human diseases

- Cause of disease, e.g.:
 - cancerogenesis due to exposition to ionising radiation
 - retinopathy of the newborn (fibroplasia retrolentalis)
- Contribute to pathogenesis, e.g:
 - atherosclerosis
 - diabetes mellitus
 - hypertension
 - some kinds of cancer
 - brain trauma/hemorrhage
 - ischemia/reperfusion injury of heart and other organs
 - Parkinson disease
 - Alzheimer disease
 - ageing
- Merely an epiphenomenon (general consequence of tissue damage)