



# Distinguish:

#### • HYPOXIA (ANOXIA)

- Lack of oxygen

#### • ISCHEMIA

- Lack of oxygen
- Blood flow restricted
- $\rightarrow$  block in supply of nutrients
- $\rightarrow$  block in removal of metabolic waste products

#### Metabolic changes due to hypoxia/ischemia: Lack of energy

- Healthy myocardium:
  - Oxidizes both glucose (32 ATP/mol) and fatty acids (106 ATP/mol palmitate)
  - 95% ATP from oxidative phosphorylation
  - 60-70% ATP used for contraction
  - 30-40% ATP used for ion pumps
- Hypoxia/ischemia:
  - Only anaerobic glycolysis available, it provides 2 ATP/mol from delivered glucose,
    - or 3 ATP/mol from glycogen (ultimate source)
  - ... contractile dysfunction must develop

Metabolic changes due to hypoxia/ischemia: Catabolism of ATP
ATP → ADP + Pi ADP + Pi → ATP Creatine-phosphate + ADP ↔ Creatine + ATP
Energy pool of the heart: - ATP ~ 5 µmol/g wet wt
Creatine phosphate ~ 8 µmol/g wet wt
Energy consumption: - ~ 0.5 µmol ATP/g wet wt and second

• Adenylate kinase reaction:

 $ADP + ADP \leftrightarrow ATP + AMP$ 













| Metabolic changes due to hypoxia/ischemia:                                                                                                                       |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| "Lactic acidosis" is not caused by lactate !                                                                                                                     |           |
| <ul> <li>Lactate is formed as anion</li> </ul>                                                                                                                   |           |
| • Glycolysis from glucose to lactate is pH neutral                                                                                                               |           |
| • H <sup>+</sup> producing:                                                                                                                                      |           |
| – Hexokinase                                                                                                                                                     | + 1H+     |
| – Phosphofructokinase                                                                                                                                            | + 1H+     |
| <ul> <li>– Glyceraldehyde-3-phosphate dehydrogenase</li> </ul>                                                                                                   | + 2H+     |
| • H <sup>+</sup> consuming:                                                                                                                                      |           |
| <ul> <li>Pyruvate kinase</li> </ul>                                                                                                                              | $-2H^{+}$ |
| <ul> <li>Lactate dehydrogenase</li> </ul>                                                                                                                        | $-2H^{+}$ |
| CH <sub>3</sub> COCOO <sup>−</sup> + NADH + H <sup>+</sup> ← → CH <sub>3</sub> CHOHCOO <sup>−</sup> + NAD <sup>+</sup><br>Pyruvate Lactate Lactate dehydrogenase |           |











# Calcium in the cell: Second messenger involved in virtually aspect of cell life In cytosol only 0.1-0.2 μM, about 1 μM is a signal Source of the signal is: outside: ligand-operated Ca<sup>2+</sup> channels voltage-operated Ca<sup>2+</sup> channels ER stores: P13 receptor/channel ryanodine receptor/channel cell membrane potential-dependent (striated muscle) Ca<sup>2+</sup> -dependent (heart, CNS)

















Metabolic changes due to hypoxia/ischemia: **Disruption of ion gradients** 

H<sup>+</sup>  $\uparrow$  , Na<sup>+</sup>  $\uparrow$  , Ca<sup>2+</sup>  $\uparrow$ 

#### **Consequences:**

Effects of Ca<sup>2+</sup> are limited by acidosis

Increased intracellular osmolarity leads to swelling, osmotic rupture and cells death



## **Reoxygenation injury**

- Additional insult to the ischemic tissue after restoration of blood flow
- Important especially after short ischemia
- If tissue damaged irreversibly by ischemia, reperfusion adds little to the damage, but can still release toxins from dead tissue (HMGB1 and other DAMPs) to the circulation
  - Multiple organ dysfunction syndrome (MODS)
  - Systemic inflammatory response syndrome (SIRS)
- Burst of oxygen radicals, NO and eicosanoids









- But human heart does not contain any xanthine oxidase
  - Enzyme present only in the liver, intestine and lactating mammary gland
  - Conversion to O form in human intestine is slow
- Other sources of ROS more important:
  - Leukocytes
    - ... no-reflow phenomenon (obturation of capillaries with white blood cells

– Mitochondria

- ... more leaky after a period of ischemia
- ... mitochondrial permeability transition (MPT)



- Ca<sup>2+</sup> uniporter: facilitated diffusion down the electrochemical gradient
- Metabolic regulation: Rate-limiting dehydrogenases are sensitive to Ca<sup>2+</sup>:
  - Pyruvate dehydrogenase
  - Isocitrate dehydrogenase
  - 2-oxoglutarate dehydrogenase

In this way heart mito respond to the cellular need of ATP (not ATP depletion!)

• Sequestration/buffering of cytosolic calcium under certain condition

# Mitochondrial Permeability Transition Pore (MPT)

- Opening of a "megachannel" in the inner mitochondrial membrane
- Permeable for any molecule < 1500 Da
- Collaps of the inner membrane potential, dissipation of proton gradient, uncoupling or inhibition of respiration
- Swelling of mitochondria



## "Megachannel" (MPT) opening is

- Triggered by: matrix Ca<sup>2+</sup>
- Stimulated by:
  - Oxidants
  - Depolarisation
  - Inorganic phosphate
- Inhibited by:
  - Protons (low matrix pH)
  - Magnesium ions
  - ATP and ADP
  - Cyclosporin A











#### MPT:

#### The critical event in reoxygenation injury of the heart

- Ischemia: low pH protects from MPT
- Reperfusion: the MPT opening in myocardium is favored coincidence of:
  - Burst of oxidative stress
  - Depletion of adenine nucleotides
  - High level of Pi (from ATP degradation)
  - High level of Ca<sup>2+</sup>
  - Rapid normalization of pH











































# Excitotoxicity in chronic neurodegeneration

- Concept of ,slow excitotoxicity':
  - Even normal stimulation with glutamate can be toxic to the neuron if its energy production is impaired
  - If formulated in this way, it can be implicated in pathogenesis of many chronic neurodegenerative diseases



- Certain level of neuronal activity is necessary for neuronal survival
- Cultivation of neurones in vitro: additions of glutamate/KCl in certain (early) phase of culture development prevent apoptosis
- NMDA receptor connected to the growth factor signaling (Ras/MAPK etc.)
- Overlap between survival (antiapoptotic) pathways and pathways of synaptic plasticity







