LIPOPROTEINS metabolism and pathophysiology

Marek Vecka

Function of lipids

energy substrate lipid microenvironment insulation membrane component substrates for further metabolization modifications of proteins/saccharides

Lipid transport

postprandial phase – digestion of lipids
from the diet

fasting state – delivery of lipids to the tissues in need

gastro-salivary phase Lingual lipase (pH optimum 3.5-6) secreted by von Ebner's glands, acts also in stomach $TAG \rightarrow 1,2$ -DAG, 2,3-DAG + FFA

Gastric lipase (pH optimum 3.5-5.4) TAG → DAG + FFA/glycerol + FFA significant contribution to the digestion (10-30 % of TAG)

gastric movements peristaltic movements grinding of the antrum 1. emulsification of lipids

water/lipid interface

intestinal phase - pancreatic lipases l Pancreatic lipase (pH optimum 6.5-9) at the interface of lipid droplets (facilitated by BA micellarization of products) $TAG \rightarrow 2$ -MAG + FFA Colipase exposes the active site of pancreatic lipase Pancreatic phospholipases PLA₁, PLA₂ activated by trypsin $PL \rightarrow 2$ -lysoPL, 1-lysoPL + FFA bile acids

lipolysis of lipids

intestinal phase - pancreatic lipases II Cholesteryl ester hydrolase (BA activated lipase) CE → FC + FFA other substrates: retinyl esters, TAG, PL, Cer alkaline sphingomyelinase SPH → Cer + P-choline neutral ceramidase Cer → sphingosine + FFA

intestinal phase - formation of micelles BA and PL displace lipolysis products from the wateroil interface

further lipolysis by lipases

3. solubilization of lipids

4+5. translocation and intracellular metabolism of lipids

Lipid absorption – fatty acids, PL

4+5. translocation and intracellular metabolism of lipids

Lipid absorption – sterols

Important lipid classes

Structure of lipoprotein

- cca spherical
- micellar
- noncovalent interaction between lipids and proteins

lipid transporting system

- polar surface (monolayer) PL/FC roteins. lipids
- possible interchange of apoproteins, lipids between lipoproteins

Plasma lipoproteins

		Apolipoproteins	Source
CM (chylomicrons)	TAG	A-I, A-II, A-IV, C-II, -III, B-48, E	intestine
remnant CM	TAG, CE	B-48, E	catabolism of CM
VLDL (very low density Lp)	TAG	B-100, C-II,-III, E	liver (intestine)
IDL (intermediate density Lp)	CE	B-100, C-II,-III, E	catabolism of VLDL
LDL (low density Lp)	CE	B-100	catabolism of IDL
HDL ₂ (high density Lp) subclass 2	CE, PL	A-I, A-II	liver, intestine catabolism of CM and VLDL
HDL ₃ (high density Lp) subclass 3	CE	A-I, A-II, minor apolipoproteins	HDL_2
lipoprotein [a]	CE	B-100 & apo [a]	liver

Lipoprotein size

Plasma apolipoproteins

apolipoprotein = protein part of lipoprotein particle many functions (intracellular \neq extracellular) Non-exchangeable apolipoproteins structural function: apo B-48, apo B-100 receptor ligands: apo B-48, apo B-100 Exchangeable apolipoproteins receptor ligands: apo E, apo A-I structural function: apo A-I modulation of enzyme activity: apo A-I, apo A-II, apo C-I, apo C-II, apo C-III enzyme activity: apo K (PON) acute phase reactant: apo I (SAA) inhibition of metabolic cascades: apo (a) (thrombolysis?) apo J (inhibitor of terminal complement complex)

Important plasma apolipoproteins

apolipoprotein	major LP class	concentration (g/l)	function	
A-I	HDL _{2,3}	1.20 - 1.40	LCAT activation HDL-receptor ligand, transport (HDL)	
A-II	HDL ₃	0.35 - 0.50	activation of hepatic lipase, transport (HDL)	
A-IV	CM, HDL _{2,3}	< 0.05	RCT(cofactor for LCAT?), abs.of exogenous TAG	
B-100	VLDL, IDL, LDL	0.60 - 1.20	transport (VLDL, IDL, LDL), LDL (apo B/E)-receptor ligand	
B-48	CM, β-VLDL	< 0.05	absorption of lipids, apoB-48 receptor ligand transport (CM, remnant CM)	
C-I	CM, VLDL	0.05 - 0.08	inhibition of CETP, LCAT activation	
C-II	CM, VLDL	0.03 - 0.07	activation of LPL	
C-III ₀₋₃	CM, VLDL	0.10 - 0.12	catabolism of CM _R , <u>inhibition of LPL</u>	
D	HDL ₃	0.08 - 0.10	free cholesterol esterification?	
E	CM, VLDL, HDL-E	0.03 - 0.05	LDL-receptor ligand, VLDL-receptor ligand, RCT LRP-receptor ligand, apoER2-receptor ligand	
Apo(a)	Lp(a)	0.05-0.30	homologous to plasminogen; prothrombotic	

RCT - reverse cholesterol transport, LCAT - lecithin:cholesterol acyltransferase, LPL - lipoprotein lipase, CE - cholesterylester, TAG - triacyglycerol, CM_R - remnant CM, β -VLDL – remnant VLDL staying in plasma

Metabolic lipoprotein pathway

Assembly of chylomicrons

Metabolic lipoprotein pathway

Assembly of VLDL

VLDL and chylomicrons

VLDL		СМ	
mainly hepatocytes	source	enterocytes	
apoB-100	ароВ	apoB-48 <i>alternative splicing of the APOB gene</i>	
30-80 nm	size	100 - 500 nm	
MTTP, CideB, ARFRP1	assembly	MTTP, CideB, ARFRP1; Sar1b, PCTV, apoA-IV	
high TAG (VLDL ₁) large less TAG (VLDL ₂) small	types	variable TAG content	
fasting: \rightarrow IDL \rightarrow LDL \rightarrow clearance	metabolism	postprandial: →CM _R → clearance	
TAG-VLDL ₁ ~ hrs	turnover	TAG-CM ~ 5 mins	
VLDL-rec, LDL-rec	receptors	LRP1 (CM _R) <i>binding domian</i>	

HDL and reverse cholesterol transport

HDL and reverse cholesterol transport

Reverse cholesterol transport sterol transport from macrophages

Other roles of HDL

Exchanges of lipid classes

- facilitating reverse cholesterol transport (LCAT)
- TAG depletion of VLDL/LDL rich particles (CETP)
- remodelling of HDLs (PLTP)

Antioxidant properties

- $oxPL (LDL) \rightarrow oxPL (HDL)$
- liberation of oxidized FA from oxPL molecules (PON-1, PAF-AH)

Particle remodelation

- part of acute phase response (SAA for PON-1)

Antiinflammatory/antithrombotic vasodilatory activity

Exchanges of lipid classes

HDL and oxidative stress

1. Removal of oxidised PL from LDL (oxLDL) oxPL (LDL) → oxPL (HDL) sdHDL are easy acceptors for oxPL (oxLDL/membranes)

2. Inactivation of oxidised PL

- via redox active residues in apo A-I (Met)
 PLOOH → PLOH
- via liberation of oxidized FA from oxPL molecules
 paraoxonase (PON-1)

hydrolysis of oxPUFA from oxPL/oxCE

platelet-activating factor acetylhydrolase (PAF-AH) hydrolysis of short chain oxFA from *sn*-2 position in ox PL

HDL remodelation

functionally defective HDL particles

acute phase response/inflammation

HDL particles lacking antiatherogenic functions

Lipoprotein receptors I (LDL rec family)

LDL receptor

diffusion: CE/TAG phagocytic mechanisms: modified LP

- needed for receptor mediated endocytosis of LP (LDL)
- recognizes apoB-100, apoE
- influenced by intracellular cholesterol levels
- mutations: autosomal dominant FH
- defective recycling/endocytosis: autosomal hyperCH

LRP1 = LDL receptor related protein 1

- needed for receptor mediated endocytosis of LP (CH_R)
- recognizes apoE

also many other molecules

VLDL receptor

- needed for receptor mediated endocytosis of VLDL (VLDL_R)
- recognizes apoE, apoJ
- influenced by estrogen, thyroid hormone

<u>apoE</u>

- three alleles $\epsilon 2/\epsilon 3/\epsilon 4$ ($\epsilon 2$ binds weakly – risk of VLDL_R / CH_R slow catabolism; $\epsilon 4$ - A β aggregation - risk factor for Alzheimer disease)

Lipoprotein receptors II (scavenger receptors)

SR-AI receptor

- phagocytic receptor (macrophages foam cells)
- recognizes modified/oxidized LDL, LPC, PS, FC
- regulates macrophage functions
- mutations: esophageal cancer?

SR-B1 = HDL receptor

- needed for transfer of CE into the cell (no degradation of particle)
- steroidogenic tissues, liver, macrophages
- recognizes HDL₂

CD36 receptor (SR-B2)

- expressed in many cell types
- recognizes HDL, mildly oxidized LDL, LP, FA, thrombospondin ...

LOX1 receptor

- in highly vascularized tissues, induced by inflammation
- recognizes oxidized LDL

Special lipoproteins

Lp(a)

1. Lp(a)

apo (a) attached to apo B-100 with S-S bond competes with plasminogen for fibrin binding sites carries oxPL in plasma? I high Lp(a) = high CVD risk ? high interindividual concentration variability

2. abnormal lipoproteins

modified/oxidized/negative LDL

LOOH → peroxidation of lipids/apoB-100 easily endocytosed by scavenger receptors Lp-X, Lp-Y

in liver diseases (albumin + FC (LCAT deficiency)) β-VLDL

in type III HLP (ϵ 2 binds weakly \rightarrow apoE enriched circulating VLDL/CM)

DISORDERS OF LIPOPROTEIN METABOLISM

DEFINITION AND SIGNIFICANCE OF DISORDERS OF LP METABOLISM

CLASSIFICATION

I. According to changes in lipid/lipoprotein classes:a) hyperlipoproteinemia (HLP)b) dyslipoproteinemia (DLP)

II. According to the cause:
a) primary HLP/DLP - independent, genetically determined diseases (60 - 90 %)
b) secondary HLP/DLP - consequence of disease (state) altering metabolism of LP

Definition of hyperlipoproteinemia, hyperlipidemia and dyslipoproteinemia

Hyperlipoproteinemia

= state connected with elevation of one or more LP classes

Hyperlipidemia

= state, when concentrations of TC and/or TAG exceed borderline concentration [defined by 90/95th percentiles]

<u>Dyslipidemia</u>

a) = state, characterised by lowered concentration of HDL-C HDL-C ≤ 0.9 mmol/l in M (resp. 1.10 mmol/l for F)

b) more generally, any disorder of LP

Pathogenesis of lipoprotein disorders

- I. ↑ synthesis of cholesterol and/or triacylglycerols ↑ secretion of LP
- II. disturbed metabolism of lipoproteins
 - changes in remodelation of particles
 - abnormal composition:
 - LP-X (liver cirrhosis), small dense LDL
 - catabolism of lipoproteins
- **III.** combination of abovementioned mechanisms

+ interaction of genetically susceptible background and non genetic effects (nutritional, metabolic, disease states)

Classification of phenotypes of hyperlipoproteinemias Primary HLP

Phenotype	L	ipoprote	ein cho	olester	ol	Primary cause
	СМ	VLDL	IDL	LDL	HDL	
I	Ŷ			\downarrow	↓	deficiency/inhibitor of LPL deficiency of apo C-II deficient apo A-V, LMF1
IIA				\uparrow		FHC (LDLr def.), PHC, deficient B-100
IIB		1		$\uparrow\uparrow$		familial combined hyperlipidemia
	(CH-R)	β- VLDL	1			familial HLP III type (apoE ε2) familial deficiency of HL
IV		ſ			↓	FHTG (polymorphisms of LPL) polymorphisms of apo A-V
V	1	↑		\downarrow	\downarrow	FHTG (decompensation) deficiency of apo C-II, A-V

LPL – lipoprotein lipase, LMF1 – lipase maturation factor 1, HL – hepatic lipase, CH-R – chylomicron remnants, FHC – familial (= monogenic, "receptor") hypercholesterolemia, PHC – polygenic hypercholesterolemia, FHTG – familial

hypertriacylglycerolemia

Classification of phenotypes of hyperlipoproteinemias Secondary HLP

Phenotype	L	ipoprot	protein cholesterol			Secondary cause
Пепотуре	СМ	VLDL	IDL	LDL	HDL	
I.	1			\downarrow	\downarrow	systemic lupus erythematodes (rarely)
IIA				1		hypothyreosis, anorexia nervosa
IIB		1		$\uparrow\uparrow$		nephrotic syndrome, anorexia nervosa, DM
	↑ (CH-R)	b- VLDL	1			hypothyreosis, DM, obesity
IV		1			\downarrow	DM, chronic renal insufficiency
۷	1	Ť		Ļ	\downarrow	EtOH abuse, diuretic treatment, estrogens (hormonal contraception, hormonal replacement therapy)

DM – diabetes mellitus

Analysis of cholesterol in LP classes plasma at 4°C overnight

electrophoresis

CLASSIFICATION OF DISTURBED LIPOPROTEIN METABOLISM by Sniderman

VLDL1, VLDL2, VLDL3 – subpopulations of VLDL particles

Classification of hyperlipidemias

Type of hyperlipidemia	Disorder in lipoprotein class	Primary cause
Hypercholesterolemia	LDL rarely HDL	Familial hypercholesterolemia (LDLr def.) Polygenic hypercholesterolemia Autosomal dominat hypercholesterolemia (PCSK9 mut.) Sitosterolemia (ABCG5/G8 def.) Famiilal defective ApoB
Hypertriacylglycerolemia	VLDL rarely VLDL + CM rarely CM	Familial endogenous hypertriacylglycerolemia Familial mixed hypertriacylglycerolemia Familial hyperchylomicronemia (LPL def.)
Mixed hyperlipidemia	VLDL + LDL rarely IDL	Familial mixed hyperlipidemia Familial dysbetalipoproteinemia (apoE ε2) Familial hepatic lipase deficiency

LDL – low density lipoproteins, VLDL – very low density lipoproteins, CM - chylomicrons, IDL – intermediary density lipoproteins, HLP - hyperlipoproteinemia

Low concentration of TC and TAG Abetalipoproteinemia Bassen-Kornzweig syndrome (autosomal dominant) mutations in MTTP gene (assembly of apoB LP) neither apoB-100 nor apoB-48 in plasma fat malabsorption (incl. vitamins A, K, E) Hypobetalipoproteinemia missense mutations in apoB gene (VLDL/CH secretion/circulation) truncated versions of apoB-100 ("apoB-2 to apoB-89") **LDL-C** \downarrow or $\downarrow\downarrow$ fat malabsorption (incl. vitamins A, K, E)

Low concentration of HDL-cholesterol

Genetic factors

- deficiency/abnormal structure of apo-A-I (e.g. Apo A-I Milano)
- Tangier disease (deficiency of ABCA1)
- deficiency of LCAT familial vs. "fish eye disease" (mild)
- deficiency and mutations of LPL
- cholesteryl ester storage diseases (lysosomal CEH)
- Niemann-Pick disease (A, B, C variants)

Non genetic causes

- obesity, hypertriacylglycerolemia
- renal insufficiency
- smoking
- decreased physical activity
- enhanced intake of SFA/diminished supply of PUFA n-3, PUFA n-6
- drugs (thiazides, α-methyl DOPA, spirolactone, phenothiazins)

Endocrinopathies

3 or more present

Metabolic syndrome

↑ waist (abd.obesity) + ↑ TAG + \downarrow HDL-C + ↑ Glc (IR) + HTN

altered metabolism of TAG rich particles

Insulin resistance

Liver:

impaired insulin antilipolytic effects (HSL inh., FFA uptake)
TFA flux from adipose tissue

Effect of higher concentrations of particles rich in triacylglycerols on LDL and HDL metabolism

Endocrinopathies

Hypothyreosis
 ↓ activity of LDL receptors and LPL (HLP IIA > IIB, III, > IV) never phenotype HLP I and V, <10% no LP change
 with E2/E2 → HLP type III relatively high frequency (4, resp. 8 % persons with hypercholesterolemias)

gravidity physiological secondary HLP (estrogens, progesterone, IR, hyperinsulinemia, human placental lactogen)

Lipid metabolism during fasting

Mobilization of lipid stores

Further reading

Textbooks, monographs Biochemistry of Lipids, Lipoproteins and Membranes (6th Ed); Ridgway ND, McLEod RS (Eds.), Elsevier, Amsterodam (The Netherlands) 2015

Lehninger Principles of Biochemistry (6th Ed); Nelson DL, Cox MM (Eds.), Susan Winslow, New York (U.S.A.) 2013

- Harper's Illustrated Biochemistry (28th Ed); Murray RK, Bender DA, Botham KM, Kennely PJ, Rodwell VW, Weil PA (Eds.), McGraw-Hill, New York (U.S.A.) 2009
- High Density Lipoproteins: From Biological Understanding to Clinical Exploitation; Eckardstein A, Kardassis D (Eds.). Springer Open, London (UK) 2015
- Lipoproteins in Health and Disease; Betteridge J, Shepherd J, Illingworth R (Eds.). CRC Press, London (UK) 1999

Articles

Mu H, Høy CE: The digestion of dietary triacylglycerols. *Progr Lipid Res* 2004; **43**: 105–133.
Alwaili K, Alrasadi K, Awan Z, Genest J: Approach to the diagnosis and management of lipoprotein disorders. *Curr Opin Endocrinol Diab Obes* 2009, **16**: 132–140.
Hegele RA: Plasma lipoproteins: genetic influences and clinical implications. *Nat Rev Genet* 2009; **10**: 109-121.
Hachem SB, Mooradian AD: Familial Dyslipidaemias: An Overview of Genetics, Pathophysiology and Management. *Drugs* 2006; **66**: 1949-1969.
Sniderman AD: Applying apoB to the diagnosis and therapy of the atherogenic dyslipoproteinemias: a clinical

diagnostic algorithm. Curr Opin Lipidol 2004; 15: 433-438.

Web sources

http://themedicalbiochemistrypage.org - the Medical Biochemistry Page

ATHEROSCLEROSIS pathogenesis risk factors

Marek Vecka

Cause of death and burden of disease

Atherosclerosis

Cardiovascular diseases atherosclerosis is most important cause cholesterol plays a crucial role in the pathogenesis of atherosclerosis

Seven countries study: cholesterolemia and mortality

Atherosclerosis

Definition

Former approach:

combination of changes in arterial intima

focal <u>accumulation of lipids</u>, complex glycides, blood and blood products, fibrous tissue and calcium, in connection with the changes in media <u>hemodynamic</u>

New definition: signals of various etiology

mechanical immunological

metabolic

proliferative response of endothelium and intima

lipid/matrix accumulation

the key role - oxidized lipoproteins

Phases of atherosclerosis

early phase – accumulation of lipids

late phase – intimal proliferation and adjacent thrombosis

from <u>Wikipedia/en</u>

Early phase of atherosclerosis

1st type of lesion – isolated foam cells derived from macrophages

2nd type of lesion (*fatty streak*) – accumulation of foam cells

intracellular lipid accumulation

3rd type of lesion (*intermediary lesion*) – small amounts of extracellularly deposited lipids (debris from foam cells)

4th type of lesion (atheroma) – lipid core localised in the basis of the lesion (almost only extracellularly accumulated lipids)

DEVELOPMENT OF FATTY STREAK

Late phase of atherosclerosis

5th type of lesion (*fibroatheroma*) – proliferation and expression of secretional phenotype of SMC, 1 synthesis of extracellular matrix (colagen and elastic fibres), the cover = thin layer of smooth muscle cells forming fibrous crust ("cap") over the lipid core

6th type of lesion (complicated lesion) - exulceration, hemmorhage into plaque, calcification of necrotic material and artery wall thrombosis

unstable plaque – see further

ATHEROSLEROTIC PLAQUE

PLAQUE THROMBOSIS

Atherothrombosis

sudden/impredictable rupture of atherosclerotic plate \rightarrow platelet activation and thrombus formation

Characteristics of unstable plate in coronary artery

	unstable plate	stable plate
size	30 - 40 % stenosis	
	eccentric	
core lipids	cca 40 %	cca 10 %
	(FC cryst.)	
monocytes/ macrophages/ foam cells	30 % (v/v)	10 % (v/v)
vascular SMC	3 – 5 %	10 – 15 %

Schematic Time Course of Human Atherogenesis

Obviously, we wouldn't like to end like this....

Risk factors of atherosclerosis and coronary heart disease

Risk factor

= abnormality found in individual without manifestation of atherosclerosis during clinical/laboratory examination

present <u>risk factor</u> **m relative risk of future atherosclerosis manifestat.**

not causally connected neither denies one another

manifestation of atherosclerosis

this must be supported by intervention studies

↑ incidence raises with ↑ incidence of risk factor association with risk factor should be *independent*, gradual and continual risk factors act synergically and/or additively

Categories of cardiovascular risk factors

Risk factors of CAD

- ✓ Unmodifiable risk factors
- gender
- positive family history (genetic background)
- age
- ethnicity

- ✓ Modifiable risk factors
- smoking
- hypertension (LVH, ECG, ECHO)
- hyper LDL-C
- hypo HDL-C
- hyper TG
- diabetes mellitus
- sedentary life
- obesity
- inflammation
- social factors (socio-economic status, type A/B of behaviour)
- exogenous estrogens

A. UNMODIFIABLE RISK FACTORS

Risk factors of CVD for stratification of risk in primary prevention of CHD

A. Unmodifiable risk factors
I. Age and gender
age: > 45 years in men,
> 55 years in women

II. Family history of early CHD
 < 55 years in male first-stage relatives
 < 65 years in female first-stage relatives

National Cholesterol Education Program (NCEP), ATP III, 2004

Lipid change with age and gender

CHD incidence – effect of age and gender

Risk factors of CVD for stratification of risk in primary prevention of CHD

II. Family history of early CHD

Candidate genes:

Apolipoproteins (A-I+CIII+AIV, AII, B, CI, CII, E, $Lp_{(a)}$) Receptors (LDL-R, Ins-R, ILGF1-R,SCR-1, SCR-2, AGTR1, PPARG1) Enzymes (CETP, LCAT, HL, LPL, CBS, renin, ACE, PON1, NOS, MTHFR) Endothelium function (ELAM, MMP3) Coagulation factors (thrombine, vWf, f.VII, fibrinogen, PAI-1, t-PA, f.XII) Growth and inflammatory factors (ILGF-1, IL-6, insulin, PDGF- β , TGF β -1) Membrane Transporters (ABCA1) Gender (ESR1) Other (CRP, ADIPOQ)

B. MODIFIABLE RISK FACTORS

Intake of fatty acids

Excessive intake of saturated fats

potentiates the rise in plasma TC: $\Delta TC = 2.74 \Delta SFA - 1.31 \Delta PUFA + 1.5 C^{-1/2}$

but not all SFA are similar: C12:0 - C14:0 - C16:0 > C18:0

Intake of EtOH

Ethanol abuse = more than 40 g EtOH daily

(high E substrate → ↑ NADH in liver → ↓ FA oxidation → fat=TAG excess)

induction of HTAG $\implies \uparrow$ VLDL (\uparrow synthesis in hepatocytes)

✓ HDL-C (↑ apo A-I synthesis in enterocytes)

Zieve syndrome

can be a result of chronic EtOH abuse

- hyperlipoproteinemia with high CH/VLDL-C and low HDL-C
- secondary deficiency of LCAT
- jaundice and reversible hemolytic anemia

Intake of sugar

Intake of fructose

Overweight and obesity

Gynoid obesity - only increased TAG and VLDL

Android obesity - often with ALP (oxidative stress, [↑] coagulability, chronical inflammation)

atherogenic lipid phenotype (ALP)
↑ TAG (VLDL) + ↓ HDL-C + ↑ sdLDL
(↑ NEFA, ↑ LDL- apoC-III+)

Effect of higher concentrations of particles rich in triacylglycerols on LDL and HDL metabolism

Phenotypes of LDL size

Generation of oxidatively modified LDLs

Properties of oxidatively modified LDL

Mechanisms of antiatherogenic effect of HDLs

- I. Direct effects on lipoprotein metabolism
 - reverse transport of CH to liver (CH acceptor from cells)
 - \uparrow catabolism (VLDL \rightarrow IDL \rightarrow LDL) (TAG acceptor via CETP)
 - block transendothelial LDL transport (closure of junctions)
 - VLDL,LDL protection to oxidation (PON-1, PAFAH carrier)
 - oxLDL cytotoxicity inhibitor (PON-1, PAFAH carrier)

II. Other effects

- anti- and dysaggregative effects on thrombocytes
- antiarrhytmic effects
- restauration of endothelial dysfunction
- inhibition of expression of cytoadhesive molecules

Reverse cholesterol transport sterol transport from macrophages

Risk factors of CVD for stratification of risk in primary prevention of CHD

B. Modifiable risk factors

Diabetes mellitus

considered as an equivalent of CHD, the presence of DM classifies the patient to the same risk group as those with already manifested atherosclerosis an independent risk factor for CVD increases CVD risk about two-fold
Incidence of myocardial infarction in diabetics

Risk factors of CVD for stratification of risk in primary prevention of CHD

B. Modifiable risk factors **Cigarette smoking** cigarette smoking in the last month Hypertension **BP > 140/90 mmHg**, or antihypertensive medication **Total plasma cholesterol** < 4.2 mmol/l – 4.2-6.1 mmol/l – > 6.2 mmol/l ideal f(age,SBP,gender) high f(smoking.HDL-C)

ESC/EAS Guidelines, 2019

Risk factors of CVD for stratification of risk in primary prevention of CHD

B. Modifiable risk factors Untreated LDL-levels desirable levels

LDL-cholesterol target values<3.0 mM</td>< 2.6 mM</td>< 1.8 mM</td>< 1.4 mM</td>low riskmoderate riskhigh riskvery high risk

HDL-cholesterol

< 1.0 mmol/l 1.0–1.6 mmol/l >1.6 mmol/l low normal "negative risk factor"

> subtracts 1 RF from risk calculation ESC/EAS Guidelines, 2019

Cholesterolemia and mortality

Additive properties of risk factors

multiplicative effect of risk factors

Other supposed risk factors for CHD

Lp[a] chronic inflammation (CRP, SAA) \rightarrow HDL remodelation mild hyperhomocysteinemia states with hypercoagulation chronic infection Chlamydia pneumoniae CMV HSV-1

Lipoprotein(a)

Lipoprotein particle resembling LDL apo (a) attached to apo B-100 with S-S bond - similar to plasminogen function of Lp(a) not fully resolved Lp(a) competes with plasminogen for fibrin binding sites inhibits fibrinolysis in vitro carrier for oxPL in plasma?

high Lp(a) high risk for cardiovascular disease

SAA and HDL remodelation

functionally defective HDL particles

acute phase response/inflammation

HDL particles lacking antiatherogenic functions

Homocysteine

Folate

Serine

dietary proteins

1. Hcy is noncoding amino acid THF MAT vit. B, Dimethylglycine Glycine • - has SH group redox balance -AdMe R Glycine methylation of PL, proteins, vit. E methionine cycle 5,10-CH folate cycle myelin, catecholamines, BHMT MS THF polysaccharides, creatine, creatinine, DNA, RNA Methylalycine R-CH. Betaine CH₃-MTHRE connection with oxidative stress ocysteine CBS vit. B. BHMT - betaine homocystein Serine Adenosine methyltransferase CBS - cystathionine B-synthase Cystathionine MAT - methionine adenosyltransferase S-Ad - S-adenosyl Met - methionine vit. B. Hcy - homocysteine α-ketobutyrate + NH 2. Hcy is linked to methylation events THF - tetrahydrofolate Cysteine MS - methionine synthase MTHFR - 5,10-methylene THF reductase SO²/₄ + CO₂ Taurine Glutathione possible DNA methylation (gene expression)

Mild hyperhomocysteinemia suggested as a risk factor for atherosclerosis - controversial results of interventional studies

- important factor in those with DM + nephropathy, thrombosis

Hypercoagulable states

= states with venous/arterial thrombosis predisposition for thrombosis damaged vessel wall

easy thrombus formation

a) mutations in factor V (Leiden), prothrombin - linked to higher risk of MI/CAD (in younger?) b) hyperhomocysteinemia (see previous slide) c) antiphospholipid syndrome/SLE - associated with CAD, stroke

Cell types involved in atherogenesis:

- endothelial cells (EC)
- thrombocytes
- blood monocytes, macrophages (mo/ma)
- smooth muscle cells (SMC)
- T-lymphocytes

Cell types involved in atherogenesis Endothelial cells (EC): transendothelial transport of apoB LP: LDL, IDL, Lp(a) (inhibited by HDL) contraction of EC catecholamines angiotensin, vasopresin Cell types involved in atherogenesis (inhibited by HDL, Lp(a) (inhibited by HDL) Contraction of EC Endothelium Derived Relaxing Factor PGI₂ NO histamin

dyslipidemia + oxidative stress (ox-LDL, high Hcy, ...smoking) physical factors: shear stress, hypertension

endothelial dysfunction

impaired vasodilatation (↓NO availability)
activated EC ↑ synthesis of local mediators:

- cell adhesion molecules: CAM by II-1, TNF α , β (T-cells, Mf)
- differentiating factors: MCP-1, MCSF-1 (oxLDL)
- adhesion molecules: ELAM (ox-LDL)

Cell types involved in atherogenesis

Thrombocytes:

- hypercholesterolemia

megakaryocyte ABCG4

monocyte/macrophage platelet activation by PAF, 12-HETE

secretion of TxA₂, 5-HT aggregation and degranulation

releasing of growth factors for SMC – PDGF many chemokines affecting monocytes/macrophages/T cells

Cell types involved in atherogenesis

Monocytes/macrophages:

- I. monocytes
- can differentiate in macrophages (via MCP-1 etc.)
- II. macrophages
- express receptors for LP: β-VLDL receptor, Ac-LDLreceptor, B/E-receptor Fc-receptor (for complex Ab-LDL)
- synthesize PAF, II-1, II-6, TNFγ, MDGF
- ox-LDL causes expression of genes and synthesis of 15-LO, MCSF, MCP-1
- III. foam cells
- not able to migrate from the cell wall
- if the capacity for FC is exceeded → dysruption of lysosomes → apoptosis → cellular debris

Cell types involved in atherogenesis

Smooth muscle cells (SMC):

phenotype switch: contractive synthetic (active) type of SMC

atherogenic stimuli

migration from media intima proliferation and production of glykosaminoglycans, colagen elastin, growth factors, cytokines

proliferation of SMC

stimulation PDGF 12-HETE IGF-1

inhibition heparin NO PGI₂ INF_Y

Mobilisation and activation of immune cells in atherosclerotic plate

Mobilisation and activation of immune cells in atherosclerotic plate

IL-10 and TGFβ attenuate inflammation

Gender specificity of risk factors

women vs. men:

estrogen rec α/β vessel vasodilatation same spectrum of risk factors for CAD, but worse for women in:

smoking: ($\checkmark E$ dep vasodilatation) central obesity: metabolic syndrome is more often in women diabetes: 50% higher risk in women for CHD dyslipidemia: hyperTAG/low HDL-C - more detrimental for women physical inactivity: relative risk for CHD higher 4.7% (vs. 3.4% in M)

Specific risk factors:

1. menopause

3. HRT

overall worsening of risk profile 2. PCOS obesity/metabolic syndrome **??effect on CHD??**

4. Preeclampsia impaired endothelial function/vasodilatation

Further reading

Textbooks, monographs

- Lehninger Principles of Biochemistry (6th Ed); Nelson DL, Cox MM (Eds.), Susan Winslow, New York (U.S.A.) 2013
- Harper's Illustrated Biochemistry (28th Ed); Murray RK, Bender DA, Botham KM, Kennely PJ, Rodwell VW, Weil PA (Eds.), McGraw-Hill, New York (U.S.A.) 2009

Articles

- Alwaili K, Alrasadi K, Awan Z, Genest J: Approach to the diagnosis and management of lipoprotein disorders. *Curr Opin Endocrinol Diab Obes* 2009, 16: 132–140.
- Grundy SM, Cleeman JI, Bairey Merz CN, Brewer B, Clark LT, Hunninghake DB, Pasternak RC, Smith SC, Stone NJ for the Coordinating Committee of the National Cholesterol Education Program. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. *Circulation* 2004; 110: 227-239.
- Hegele RA: Plasma lipoproteins: genetic influences and clinical implications. *Nat Rev Genet* 2009; 10: 109-121
 Hansson GK, Libby P: The immune response in atherosclerosis: a double-edged sword. *Nat Rev Immunol* 2006; 6: 508-519.
- Hachem SB, Mooradian AD: Familial Dyslipidaemias: An Overview of Genetics, Pathophysiology and Management. *Drugs* 2006; 66: 1949-1969.
- Verschuren WMM, Jacobs DR, Bloemberg BPM, Kromhout D, Menotti A, Aravanis C, Blackburn H, Buzina R, Dontas AS, Fidanza F, Karvonen MJ, Nedelijković S, Nissinen A, Toshima H: Serum Total Cholesterol and Long-term Coronary Heart Disease Mortality in Different CulturesTwenty-five—Year Follow-up of the Seven Countries Study. JAMA 1995; 274: 131-136.
- Stamler J, Wentworth D, Neaton JD, for the MRFIT Research Group: Is relationship Between Serum Cholesterol and risk of Premature Death from Coronary Heart Disease Continuous and Graded? *JAMA* 1986; 256: 2823-2828.

Web sources

- http://themedicalbiochemistrypage.org the Medical Biochemistry Page
- http://www.bioguo.org/CADgene/index.php
- http://www.who.int/healthinfo/en WHO reports
- http://www.trialresultscenter.org resource for trials (e.g. for cardiology trials)