Enzyme Regulation

MUDR. MARTIN VEJRAŽKA, PHD.

Enzyme regulation

Body IS NOT in chemical equilibrium

Equilibrium = death Life: Homeostasis, steady-state...

Catalysis in a closed system

Without catalyst Equilibrium is set up slowly

Catalysis in a closed system

With a catalyst The same equilibrium as w/o catalyst but much faster

Opened system

Enzyme regulation

Controls concentrations

Corresponds to

- needs
- delivery

Enzyme regulation

Disrupted regulation causes disease

Kinases and phosphatases: cancer
 Evenue of composition cubstance

 Excess of some substance (cholesterol – atherosclerosis, uric acid – gout...)

Laboratory diagnostics

 \uparrow or \downarrow of concentration of some substance \uparrow/\downarrow formation / elimination

or

Measuring activity of an enzyme

acetylosalicylic acid
simvastatine
allopurinol
omeprazole
sildenafil
vincristine
tetracycline
sulbactam
atorvastatine
enalaprile

co-trimoxazole

Enzymes and drugs

Effect of many drugs is changed by action of enzymes

cytochrome P₄₅₀
 conjugation
 acetylation
 ...

Enzyme regulation

Concentration of enzyme

Induction and repression

Induction

Inducible enzyme

Induction

- Alcohol dehydrogenase and aldehyde dehydrogenase
 constitutive enzymes
- 2. MEOS
 - inducibile

Repression

Conversion of pro-enzyme

Blood clotting

Degradation of enzyme

Degradation of enzyme

Often depends on conformation

Enzyme with substrate bound to active site is protected

Degradation of enzyme

Grapefruite juice increases degradation of intestinal cytochrome P450

Activity drops by one half within several hours
Availability and effect of many drugs is increased

Substrate delivery

Concentration of substances

Compartments

Compartments

Macromolecular complexes of enzymes

- Passing substrates products, high local concentrations
- Transfer of conformational changes

Substrate concentration

Substrate concentration

Concentration of <u>free</u> substrate

Catalytic efficacy

Catalytic efficacy

Catalytic efficacy

Inhibitors

drugs, poisons

Allosteric modification

Small molecules

Covalent modifications

Interactions between subunits

Inhibitors

Competitive

• Compete with substrate

Other

• Non-competitive, acompetitive, mixed

Competitive inhibition

Inhibitor often resembles substrate

Effect depends on

- Concentration ratio
- Affinity ratio

Reversible

Copetitive inhibitors

Noncompetitive inhibition

Inhibitor does not compete with substrate Decreases amount of working enzyme Reversible or irreversible

Noncompetitive inhibitors

Noncompetitive inhibitor

Photos from Bayer Health Care: http://www.aspirin.cz/aspirin/world/history/1/index.asp (11/2007)

Allosteric modifiers

Do not resemble substrates nor co-enzymes Bind to a site distant from active site Change conformation of enzyme

Allosteric inhibitors

Allosteric inhibitors

Feed-back inhibiton by the last low-molecular weight molecule

The first irreversible reaction is inhibited

Cooperativity

Cooperativity

Covalent modiffication

Reversible phosphorylation of –OH

Beyond active site

Kinases (phosphate from ATP)

- Ser, Thr
- Tyr

Phosphatases (dephosphorylation – hydrolysis of ester bond)

Phosphorylation

Phosphorylation

Assembly of subunits

(protein-protein interactions)

Catalytic subunit

Regulatory subunit

- binding cAMP
- calmodulin binds Ca²⁺
- G-proteins bind GTP/GDP

•