Organic chemistry

MARTIN VEJRAŽKA

Organic chemistry

Fridrich Wöhler
1800-1882

Synthesis of urea from ammonium cyanate (1828)

Jan Horbaczewski

Absolved medical school of Vienna
Founded Institute of Medical Chemistry (1883)

Synthetised uric acid (1882)

1854-1942

Jan Horbaczewski

1854-1942

Jan Horbaczewski

Further experiments:

- Uric acid raises from degradation of cells with nucleus only
- Separated uric acid from xanthine and other purines

1854-1942

- Predicted that uric acid is degradation product of them

Bonds in organic compounds

Chemical bond

Non-polar

Polarity of bond

	Difference in electronegativity
Non-polar	<0.4
Polar	$0.4-1.7$
Ionic	>1.7

Electronegativity

https://www.quora.com/What-are-the-definitions-of-oxidation-number-and-formal-charge

σ and π

Covalent bond

σ

Longer
Can rotate
π
Shorter
Cannot rotate

Multiple bond

stronger

Orbital hybridization

Ground electron configuration of carbon C

$$
1 s^{2} 2 s^{2} 2 p^{2}
$$

$$
\frac{\uparrow \downarrow}{1 \mathrm{~s}} \frac{\uparrow \downarrow}{2 \mathrm{~s}} \frac{\uparrow}{2 \mathrm{p}_{\mathrm{x}}} \frac{\uparrow}{2 \mathrm{p}_{\mathrm{y}}} \frac{}{2 \mathrm{p}_{\mathrm{z}}}
$$

Orbital hybridization

Excited state C*

$$
1 \mathrm{~s}^{2} 2 \mathrm{~s}^{1} 2 \mathrm{p}^{3} \quad \frac{\uparrow \downarrow}{1 \mathrm{~s}} \frac{\uparrow}{2 \mathrm{~s}} \frac{\uparrow}{2 \mathrm{p}_{\mathrm{x}}} \frac{\uparrow}{2 \mathrm{p}_{\mathrm{y}}} \frac{\uparrow}{2 \mathrm{p}_{\mathrm{z}}}
$$

Orbital hybridization

Hybridization C*

$$
\frac{\uparrow}{1 \mathrm{~s}} \frac{\uparrow}{\mathrm{sp}^{3}} \frac{\uparrow}{\mathrm{sp}^{3}} \frac{\uparrow}{\mathrm{sp}^{3}} \frac{\uparrow}{\mathrm{sp}^{3}}
$$

Orbital hybridization

Cannot rotate!

Hybrid bonds

E.G. „1.5×" bond

- Longer than double, shorter than single
- Energetic properties between single and double
- Cannot rotate
- Carboxylic group
- Benzene nucleus

Non-bonded interactions

- Van der Waals force
- Mostly in non-polar compounds
-Hydrophobic interactions

Non-bonded interactions

Hydrogen bridges

$10 \times$ weaker than ionic and covalent bonds

Non-bonded interactions

Hydrophobic interaction

Organic molecules

Organic formulas

Summation formula
Structural formula

- All bonds
- Confusing

Rational

- Most used

Perspective

- Arrangement in space

Isomerism and conformation

Isomers: Identic summation formula, different arrangement
Isomeration = breaking and making bonds

Conformers: Various arrangement in space - rotation around bonds Change of conformation - no breaking and making bonds

Constitutional isomers

1-propanol

2-propanol

Tautomers

Keto-form

Enol-form

Tautomers are isomers
but they mostly can change each into the other spontaneously

Peptide bond

Properties of „ $1.5 \times$ " bond

- Shorter than single
- Cannot rotate

Configuration isomerism

Optical isomerism

Compounds with center of chirality are optically active

Selected derivatives of hydrocarbons

Halogen derivatives

Bonds C-Cl, C-Br, C-I are non-polar

- Mostly non-polar solvents, volatile
- E.g. tetrachlormethane CCl_{4}, chloroform $\mathrm{CCl}_{3} \mathrm{H}$
- Narcotics
- Freons (e.g. $\mathrm{CCl}_{3} \mathrm{~F}$)

Hydroxyderivatives

Alifatic: alcohols

Aromatic: phenols
$\mathrm{C}-\mathrm{OH}$ bond is very polar
May form hydrogen bonds

Alcohols

- Esterification
- Oxidation
- Alcoholates

Esterification

Back reaction:
Hydrolysis of an ester

Oxidation of alcohols

Primary

Secondary

Tertiary

Phenols

- More acidic (phenolates)
- Oxidation to (semi)quinones

Oxoderivatives

- Aldehydes
- Ketones
- Cannot form hydrogen bridges easily
- Oxidoreductions
- Formation of Schiff base

Schiff base

Ethers

- Group R-O-R
- Less polar
- Simple: explosive

Carboxylic acids

- Weak acids
- Higher fatty acids
- Hydrogen bonds - can form dimers

Carboxylic acids

- Reduction
- Decarboxylation
- Anhydrides

Acetic acid
Acetanhydride

