pH calculations

MUDr. Jan Pláteník, PhD

Brønsted-Lowry concept of acids and bases

- Acid is a proton donor
- Base is a proton acceptor

$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
Acid Base Conjugate Conjugate acid base

Which of the following are conjugate acid-base pairs?

A) $\mathrm{HCl}, \mathrm{NaOH}$
B) $\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}$
C) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{4}{ }^{2-}$
D) $\mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{HSO}_{3}{ }^{-}$
E) $\mathrm{HClO}_{4}, \mathrm{ClO}_{3}^{-}$
F) $\mathrm{H}_{3} \mathrm{C}-\mathrm{NH}_{2}, \mathrm{H}_{3} \mathrm{C}-\mathrm{NH}_{3}{ }^{+}$

Autoionization of water

Water is amphoteric as it can behave both as acid and base

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Ion-product constant for water:

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

In pure water at $25^{\circ} \mathrm{C}$:

$$
\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{~mol} / \mathrm{L}
$$

$\mathrm{K}_{\mathrm{w}}=\left(1.0 \times 10^{-7} \mathrm{~mol} / \mathrm{L}\right) \times\left(1.0 \times 10^{-7} \mathrm{~mol} / \mathrm{L}\right)=1.0 \times 10^{-14} \mathrm{~mol}^{2} / \mathrm{L}^{2}$
Constant!

pH

$\mathbf{p H}=-\log _{10}\left(\right.$ activity of $\left.\mathbf{H}^{+}\right)$
$\mathrm{pOH}=-\log _{10}$ (activity of OH^{-})
Ion-product of water (constant!):

Activity $=\mathrm{f} . \mathrm{c}$
f is activity coefficient, $\mathrm{f}<1$,
c is molar concentration

$$
\mathrm{pH}+\mathrm{pOH}=14
$$

E.g.:

$\mathrm{pH}=7$ (neutral): $\left[\mathrm{H}^{+}\right]=10^{-7} \mathrm{M}=0.0000001 \mathrm{~mol} / \mathrm{L}$
$\mathrm{pH}=1$ (acidic): $\left[\mathrm{H}^{+}\right]=10^{-1} \mathrm{M}=0.1 \mathrm{~mol} / \mathrm{L}$
$\mathrm{pH}=13$ (alkaline): $\left[\mathrm{H}^{+}\right]=10^{-13} \mathrm{M}=0.0000000000001 \mathrm{~mol} / \mathrm{L}$

Strong acid

E.g. $\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$

In aqueous solution fully dissociates to H^{+}and A^{-}
pH of strong acid can be calculated as

$$
\mathrm{pH}=-\log \left(\mathrm{f} \times\left[\mathrm{H}^{+}\right]\right)
$$

For $\mathrm{HCl}:\left[\mathrm{H}^{+}\right]=[\mathrm{HCl}]$
For $\mathrm{H}_{2} \mathrm{SO}_{4}:\left[\mathrm{H}^{+}\right]=\sim\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]$
($2^{\text {nd }} \mathrm{H}^{+}$does not fully dissociate, $\mathrm{K}_{\mathrm{d}}=\sim 10^{-2}$)

Calculating the pH of strong acid solutions

Example: Calculate the pH of $0.06 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$.
$\mathrm{pH}=-\log 0.06=\underline{1.22}$

If activity coefficient is known/given:
e.g. $\mathrm{f}=0.879$, then $\mathrm{pH}=-\log (0.879 \times 0.06)=\underline{1.28}$

Calculating the pH of strong acid solutions

Example 2: Calculate the pH of $0.02 \mathrm{~mol} / \mathrm{L} \mathrm{H}_{2} \mathrm{SO}_{4}$.
$\mathrm{pH}=-\log 0.02=1.3979=\sim 1.4$

Calculating the pH of strong acid solutions

Example 3: Calculate the pH of $1.0 \times 10^{-10} \mathrm{M} \mathrm{HCl}$.

.... alkaline?

Water contributes more protons than HCl in this case $\left(10^{-7} \mathrm{M}\right)$, pH will be the same as in pure water, i.e. 7

Strong base

$\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}$
In aqueous solution fully dissociate to metal ion and OH^{-}
pH of strong base can be calculated as
$\mathrm{pOH}=-\log \left(\mathrm{f} \times\left[\mathrm{OH}^{-}\right]\right)$
$\mathrm{pH}=14-\mathrm{pOH}=14-\left(-\log \left(\mathrm{f} \times\left[\mathrm{OH}^{-}\right]\right)\right.$

For $\mathrm{NaOH}:\left[\mathrm{OH}^{-}\right]=[\mathrm{NaOH}]$
For $\mathrm{Ba}(\mathrm{OH})_{2}:\left[\mathrm{OH}^{-}\right]=2 \times\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]$

Calculating the pH of strong base solutions

Example:
a) Calculate the pH of $\mathrm{NaOH} 0.5 \mathrm{~mol} / \mathrm{L}$.
$\mathrm{pH}=14-(-\log 0.5)=\simeq 13.7$
b) If this solution is diluted 10 -fold, what will be the resulting pH ?
$\mathrm{pH}=\underline{\sim 12.7}$

Weak acid

E.g. $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{COOH}$

Only some small fraction of molecules in solution dissociates to anion and proton:
$\mathrm{CH}_{3} \mathrm{COOH} \leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
$\mathrm{K}_{\mathrm{d}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right] \times\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$

$$
\frac{\mathrm{pH}=1 / 2 \times \mathrm{pK}-1 / 2 \times \log [\mathrm{AH}]}{\mathrm{pK}=-\log \mathrm{K}_{\mathrm{d}}}
$$

- If we know $\mathrm{pK}\left(\mathrm{K}_{\mathrm{d}}\right)$ and concentration of a weak acid solution, we can calculate (predict) pH of the solution:

$$
\mathrm{pH}=1 / 2 \times \mathrm{pK}-1 / 2 \times \log [\mathrm{AH}]
$$

- If we measure pH of a weak acid solution of a known concentration, we can determine its pK $\left(K_{d}\right)$:

$$
\mathrm{pK}=2 \times \mathrm{pH}+\log [\mathrm{AH}]
$$

Calculating the pH of weak acid solutions

Example: Calculate the pH of $0.01 \mathrm{~mol} / \mathrm{L}$ acetic acid.
$\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$.

$$
\begin{aligned}
\mathrm{pH} & =1 / 2 \times \mathrm{pK}-1 / 2 \times \log [\mathrm{AH}] \\
\mathrm{pK} & =-\log \left(1.8 \times 10^{-5}\right)=4.7447 \\
\mathrm{pH} & =1 / 2 \times 4.7447-1 / 2 \times \log 0.01= \\
& =2.372-(-1)=\underline{3.372}
\end{aligned}
$$

Calculating the $\mathbf{p H}$ of weak acid solutions

Example 2: Calculate the pH of $0.1 \mathrm{~mol} / \mathrm{L}$ hypochlorous acid. $\mathrm{K}_{\mathrm{a}}=3.5 \times 10^{-8}$.

$$
\begin{aligned}
\mathrm{pH} & =1 / 2 \times \mathrm{pK}-1 / 2 \times \log [\mathrm{AH}] \\
\mathrm{pK} & =-\log \left(3.5 \times 10^{-8}\right)=7.456 \\
\mathrm{pH} & =1 / 2 \times 7.456-1 / 2 \times \log 0.1= \\
& =3.728-(-0.5)=4.228
\end{aligned}
$$

Titration

- Reaction: $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$
- Substance A: unknown concentration, amount (solution volume) known
- Substance B: known concentration, is used to determine concentration of A
- added gradually to A until the reaction is just complete, and the consumed amount is recorded
- an indicator is needed to show that the reaction has reached completion

Types of titration

- Neutralisation reaction (acid-base titration)

$$
\begin{aligned}
\mathrm{HCl}+\mathrm{NaOH} & \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
\text { ionic: } \mathbf{H}^{+}+\mathrm{OH}^{-} & \rightarrow \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

indicator e.g. phenolphthalein (in acid colourless, but violet in alkali

- Precipitation reaction
- Redox reaction

Titration calculations

Example: An unknown sample of sulfuric acid $\mathrm{H}_{2} \mathrm{SO}_{4}$ was titrated with the known KOH solution. It was found that 12 mL of the $\mathrm{KOH} \mathrm{c}=0.1 \mathrm{~mol} / \mathrm{L}$ was needed for just complete neutralisation of $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4}$ unknown sample.

What is concentration of sulfuric acid in the sample?
Equation: $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
Calculation:

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{SO}_{4} & \mathrm{KOH} \\
\mathrm{c}_{1} \cdot \mathrm{v}_{1} & =\mathrm{c}_{2} \cdot \mathrm{v}_{2} \\
\mathrm{c}_{1} & =\mathrm{c}_{2} \cdot \mathrm{v}_{2} / \mathrm{v}_{1} \\
\mathrm{c}_{1} & =0.1 \cdot 12 / 10=0.12
\end{array}
$$

Including stoichiometry : $\mathrm{c}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=0.12 / 2=\underline{0.06 \mathrm{~mol} / \mathrm{L}}$

Weak base

E.g. $\mathrm{NH}_{3}(\mathrm{aq})$, organic amines

A fraction of molecules in aqueous solution accepts proton from water:

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

$\mathrm{pOH}=1 / 2 \times \mathrm{pK}-1 / 2 \times \log [\mathrm{B}]$
$\mathrm{pH}=14-\mathrm{pOH}=14-1 / 2 \times \mathrm{pK}+1 / 2 \times \log [\mathrm{B}]$

Calculating the pH of weak base solutions

Example: Calculate the pH of $5 \mathrm{~mol} / \mathrm{L}$ aqueous ammonia.
$\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$.

$$
\begin{aligned}
\mathrm{pH} & =14-1 / 2 \times \mathrm{pK}_{\mathrm{b}}+1 / 2 \times \log [\mathrm{B}] \\
\mathrm{pK}_{\mathrm{b}} & =-\log \left(1.8 \times 10^{-5}\right)=4.745 \\
\mathrm{pH} & =14-1 / 2 \times 4.7447+1 / 2 \times \log 5= \\
& =14-2.37236+0.349=\underline{11.977}
\end{aligned}
$$

Hydrolysis of salts

Reaction of dissolved salts with water, e.g.:
A) Anion from a strong acid, cation from a weak base, e.g.
$\mathrm{NH}_{4} \mathrm{Cl}$:
$\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
... pH is acidic
$\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \ldots$ no reaction
B) Anion from a weak acid, cation from a strong base, e.g.
NaHCO_{3} :
$\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} \ldots$ no reaction
$\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-} \quad \ldots \mathrm{pH}$ is alkaline

pH of salt will be:

Anion is from...

	strong acid e.g. HCl	weak acid e.g. $\mathrm{H}_{2} \mathrm{CO}_{3}$
strong base e.g. NaOH	NEUTRAL e.g. NaCl	$\begin{gathered} \text { BASIC } \\ \text { e.g. } \mathrm{NaHCO}_{3} \end{gathered}$
weak base e.g. $\mathrm{NH}_{4} \mathrm{OH}$	$\begin{gathered} \hline \text { ACIDIC } \\ \text { e.g. } \mathrm{NH}_{4} \mathrm{Cl} \end{gathered}$	

Calculate the pH of $0.5 \mathrm{~mol} / \mathrm{L}$ sodium hydrogen carbonate, NaHCO_{3}. The $\mathrm{K}_{\mathrm{a} 1}$ of carbonic acid is 4.3×10^{-7}.

$$
\begin{aligned}
& \mathrm{pH}=14-1 / 2 \times \mathrm{pK}_{\mathrm{b}}+1 / 2 \times \log [\mathrm{B}] \\
& \mathrm{pK}_{\mathrm{a}}=-\log \left(4.3 \times 10^{-7}\right)=6.3665 \\
& \mathrm{pK}_{\mathrm{b}}=14-6.3665=7.6335 \\
& \mathrm{pH}=14-1 / 2 \times 7.6335+1 / 2 \times \log 0.5= \\
& \quad=14-3.81675+(-0.1505)=\underline{10.033}
\end{aligned}
$$

Buffers

- Mixture of weak acid and its conjugate base (salt), e.g.:
$-\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
$-\mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{Na}_{2} \mathrm{HPO}_{4}$
- Mixture of weak base and its conjugate acid (salt), e.g.:
- Tris + TrisHCl

Tris (free base)

+ TrisHCl (the salt, conjugated acid)

Tris stands for: $\operatorname{Tris}($ hydroxymethyl)aminomethane

Henderson-Hassebalch equation

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{AH}]}
$$

$\mathrm{pK}_{\mathrm{a}} \ldots$...negative log of dissociation constant of the weak acid [A^{-}] ...substance concentration of the salt/conjugate base
[AH] ...substance concentration of the weak acid

How buffer works

E.g. phosphate buffer: $\mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{Na}_{2} \mathrm{HPO}_{4}$

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log
$$

Addition of strong acid:

$$
\mathrm{Na}_{2} \mathrm{HPO}_{4}+\mathrm{HCl} \rightarrow \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{NaCl}
$$

Ionic: $\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log
$$

\square

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \square \square \square \square \square
$$

How buffer works

E.g. phosphate buffer: $\mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{Na}_{2} \mathrm{HPO}_{4}$

Addition of strong base:

$$
\mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{HPO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

Ionic: $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{2-}+\mathrm{OH}^{-} \rightarrow \mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \square \square \square \square \square
$$

Calculating the $\mathbf{p H}$ of buffer

Example 1: Calculate the pH of acetate buffer $0.1 \mathrm{~mol} / \mathrm{L}$, in which the acid:salt ratio is $2: 3$.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5} . \\
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left[\mathrm{A}^{-}\right] /[\mathrm{AH}] \\
& \mathrm{pK}=-\log \left(1.8 \times 10^{-5}\right)=4.7447 \\
& \mathrm{pH}=4.7447+\log 3 / 2= \\
&=4.7447+0.17609= \\
&=\underline{4.92}
\end{aligned}
$$

Calculating the $\mathbf{p H}$ of buffer

Example 2: Calculate the pH of sodium phosphate buffer that originated from mixing 150 mL of $0.1 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$ and 250 mL of $0.05 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4} . \mathrm{pK}_{\mathrm{a}}=7.21$.

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log [\mathrm{A}] /[\mathrm{AH}] \\
& \mathrm{NaH}_{2} \mathrm{PO}_{4}: 0.1 \mathrm{~mol} / \mathrm{L} \times 0.15=0.015 \mathrm{~mol} \\
& \begin{aligned}
\mathrm{Na}_{2} & \mathrm{HPO}_{4}: 0.05 \mathrm{~mol} / \mathrm{L} \times 0.25=0.0125 \mathrm{~mol} \\
\mathrm{pH} & =7.21+\log 0.0125 / 0.015= \\
\quad & =7.21+(-0.07918)= \\
& =\underline{\sim 7.13}
\end{aligned}
\end{aligned}
$$

Calculating the $\mathbf{p H}$ of buffer

Example 3: 500 mL of Tris free base 0.1 M was combined with 20 mL of 1 M HCl . What is predicted pH of the resulting Tris $/ \mathrm{HCl}$ buffer? Tris $\mathrm{pK}_{\mathrm{b}}=5.98$.

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left[\mathrm{A}^{-}\right] /[\mathrm{AH}] \\
& \mathrm{pK}_{\mathrm{a}}=14-\mathrm{pK}_{\mathrm{b}}
\end{aligned}
$$

Tris free base: 0.05 mol
$\mathrm{HCl}: 0.02 \mathrm{~mol}$
Tris $+\mathrm{HCl} \rightarrow$ TrisHCl

$$
\begin{aligned}
\mathrm{pH} & =(14-5.98)+\log (0.05-0.02) / 0.02= \\
& =8.02+0.176= \\
& =8.196=\underline{\sim 8.2}
\end{aligned}
$$

