

MUDr. Jan Pláteník, PhD

Which of the following are conjugate acid-base pairs?

A) HCl, NaOH
B) H₂O, OH⁻
C) H₂SO₄, SO₄²⁻
D) H₂SO₃, HSO₃⁻
E) HClO₄, ClO₃⁻
F) H₃C-NH₂, H₃C-NH₃⁺

Autoionization of water

Water is amphoteric as it can behave both as acid and base

$$2 H_2O(l) \longrightarrow H_3O^+(aq) + OH^-(aq)$$

Ion-product constant for water:

$$K_w = [H_3O^+][OH^-] = [H^+][OH^-]$$

In pure water at 25 °C:

 $[H^+] = [OH^-] = 1.0 \times 10^{-7} \text{ mol/L}$

$$K_w = (1.0 \times 10^{-7} \text{ mol/L}) \times (1.0 \times 10^{-7} \text{ mol/L}) = 1.0 \times 10^{-14} \text{ mol}^2/\text{L}^2$$

Constant!

pН

Activity = $f \cdot c$

f<1,

f is activity coefficient,

c is molar concentration

pH= -log₁₀(activity of H⁺)
pOH= -log₁₀(activity of OH⁻)
Ion-product of water (constant!):

pH + pOH = 14

E.g.:

pH=7 (neutral): $[H^+] = 10^{-7} M = 0.0000001 mol/L$ pH=1 (acidic): $[H^+] = 10^{-1} M = 0.1 mol/L$ pH=13 (alkaline): $[H^+] = 10^{-13} M = 0.000000000001 mol/L$

Strong acid E.g. HCl, HNO₃, H₂SO₄ In aqueous solution fully dissociates to H⁺ and A⁻ pH of strong acid can be calculated as $pH = -log (f \times [H^+])$ For HCl: $[H^+] = [HCl]$ For H_2SO_4 : $[H^+] = \sim [H_2SO_4]$ $(2^{rd} H^+ does not fully dissociate, K_d = \sim 10^{\circ})$

Calculating the pH of weak acid solutions

Example: Calculate the pH of 0.01 mol/L acetic acid. $K_a = 1.8 \times 10^{-5}$.

 $pH = \frac{1}{2} \times pK - \frac{1}{2} \times \log [AH]$

 $pK = -log(1.8 \times 10^{-5}) = 4.7447$

 $pH = \frac{1}{2} \times 4.7447 - \frac{1}{2} \times \log 0.01 =$ = 2.372 - (-1) = 3.372

Calculating the pH of weak acid solutions

Example 2: Calculate the pH of 0.1 mol/L hypochlorous acid. $K_a = 3.5 \times 10^{-8}$.

 $pH = \frac{1}{2} \times pK - \frac{1}{2} \times \log [AH]$

 $pK = -log(3.5 \times 10^{-8}) = 7.456$

$$pH = \frac{1}{2} \times 7.456 - \frac{1}{2} \times \log 0.1 =$$
$$= 3.728 - (-0.5) = 4.228$$

Titration

- Reaction: $A + B \rightarrow C$
- Substance A: unknown concentration, amount (solution volume) known
- **Substance B:** known concentration, is used to determine concentration of A
 - added gradually to A until the reaction is just complete, and the consumed amount is recorded
 - an **indicator** is needed to show that the reaction has reached completion

Titration calculations

Example: An unknown sample of sulfuric acid H_2SO_4 was titrated with the known KOH solution. It was found that 12 mL of the KOH c=0.1 mol/L was needed for just complete neutralisation of 10 mL H_2SO_4 unknown sample.

What is concentration of sulfuric acid in the sample?

Equation: $H_2SO_4 + 2 \text{ KOH} \rightarrow K_2SO_4 + 2 H_2O$ Calculation: H_2SO_4 KOH $c_1 \cdot v_1 = c_2 \cdot v_2$ $c_1 = c_2 \cdot v_2/v_1$ $c_1 = 0.1 \cdot 12/10 = 0.12$ Including stoichiometry : $c(H_2SO_4) = 0.12/2 = 0.06 \text{ mol/L}$

Calculating the pH of weak base solutions

Example: Calculate the pH of 5 mol/L aqueous ammonia. $K_{\rm b} = 1.8 \times 10^{-5}$.

 $pH = 14 - \frac{1}{2} \times pK_b + \frac{1}{2} \times \log [B]$

 $pK_{b} = -log(1.8 \times 10^{-5}) = 4.745$

 $pH = 14 - \frac{1}{2} \times 4.7447 + \frac{1}{2} \times \log 5 =$ = 14 - 2.37236 + 0.349 = 11.977

		Anion is from		
		strong acid e.g. HCl	weak acid e.g. H ₂ CO ₃	
Cation is from	strong base e.g. NaOH	NEUTRAL e.g. NaCl	BASIC e.g. NaHCO ₃	
	weak base e.g. NH ₄ OH	ACIDIC e.g. NH ₄ Cl	ACIDIC/BASIC (depends on pK) e.g. NH ₄ HCO ₃	

Calculate the pH of 0.5 mol/L sodium hydrogen carbonate, NaHCO₃. The K_{a1} of carbonic acid is 4.3×10^{-7} . $pH = 14 - \frac{1}{2} \times pK_b + \frac{1}{2} \times \log [B]$ $pK_a = -\log(4.3 \times 10^{-7}) = 6.3665$ $pK_b = 14 - 6.3665 = 7.6335$ $pH = 14 - \frac{1}{2} \times 7.6335 + \frac{1}{2} \times \log 0.5 =$ = 14 - 3.81675 + (-0.1505) = 10.033

Henderson-Hassebalch equation

$$pH = pK_a + log \frac{[A^-]}{[AH]}$$

pK_a...negative log of dissociation constant of the weak acid [A⁻] ...substance concentration of the salt/conjugate base [AH] ...substance concentration of the weak acid

Calculating the pH of buffer Example 1: Calculate the pH of acetate buffer 0.1 mol/L, in which the acid:salt ratio is 2:3. $K_a = 1.8 \times 10^{-5}.$ $pH = pK_a + \log [A^{-}]/[AH]$ $pK = -\log(1.8 \times 10^{-5}) = 4.7447$ $pH = 4.7447 + \log 3/2 =$ = 4.7447 + 0.17609 == 4.92

Calculating the pH of buffer

Example 2: Calculate the pH of sodium phosphate buffer that originated from mixing 150 mL of 0.1 M NaH_2PO_4 and 250 mL of 0.05 M Na_2HPO_4 . pK_a = 7.21.

 $pH = pK_a + \log [A^-]/[AH]$

 $NaH_2PO_4: 0.1 \text{ mol/L} \times 0.15 = 0.015 \text{ mol}$

 $Na_2HPO_4: 0.05 \text{ mol/L} \times 0.25 = 0.0125 \text{ mol}$

 $pH = 7.21 + \log 0.0125/0.015 =$ = 7.21 + (-0.07918) = = ~ 7.13

