Biochemistry of connective tissue
- extracellular matrix

Lenka Fialová
Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University, Prague
Connective tissue

The connective tissue is formed by:

CELLS

and

EXTRACELLULAR MATRIX (intercellular matrix)
Extracellular matrix

Function

- stabilisation of tissue structure
- regulation cell behavior
 - survival, development, migration, proliferation
- membrane filtration barrier (glomerules)
- exchange of different metabolites, ions and water
- reparation function
- immune processes
- participation in inflammation
Cells of connective tissue

- Fibroblasts
- Chondroblasts (cartilage)
- Osteoblasts (bone)
- Odontoblasts (tooth)

These cells synthesise extracellular matrix.
Extracellular matrix

Parts of the extracellular matrix

- **FIBRILLAR PROTEINS** (collagen, elastin)
 - insoluble in water, no hydration
- **GLYCOPROTEINS** (e.g. fibronectin, laminin)
- **GLYCOSAMINOGlyCANS AND PROTEOGlyCANS**
 - soluble in water, easily hydrated

Saccharide content increases
Extracellular matrix

FIBRILLARY PROTEINS

- Structural proteins
 - collagen *firmness*
 - elastin *elasticity*
COLLAGENS

The most abundant proteins in mammals. They form approximately 25% of all body proteins.
Collagens

Collagenum

gr. *kolla* glue;
gr. *gennao* constitute

By boiling collagen is denatured to a colloid solution (gelatine). From the nonpurified collagen the glue arises.

Incidence

• main protein of the extracellular matrix
• component of tendons, cartilages, bones, and teeth (dentin and cement), skin and vessels.

Properties

• fibrillar proteins
• nonsoluble (glyco-) proteins
• HIGH STRENGTH, BUT ALSO SUPPLENESS
Structure of collagen
Collagens

Collagen has a characteristic amino acid composition and their specific sequence.

Primary structure

- Characteristic AA composition
- Characteristic AA sequence

Mature collagen contains no tryptophan and almost no cysteine – from the nutritional point of view not fully valuable protein.
Primary structure of collagen

Characteristic AA composition

- Fundamental amino acids
 - Glycine 33 % (x Hb 4 %)
 - Proline 13 % (x Hb 5 %)

- Derived amino acids
 - 4-Hydroxyproline 9 % (x Hb 0 %)
 - 5-Hydroxylysine 0.6 % (x Hb 0 %)

Origin by posttranslational modification

Hb = hemoglobin
Primary structure of collagen

Fundamental AA
- **Glycine**
- **Proline**

Derived AA
- **4-Hydroxyproline**
- **5-Hydroxylysine**
Primary structure of collagen

Characteristic AA sequence

Triplet

- Gly - X - Y -

• Every third AA is GLYCINE
• On the next position frequently PROLINE
• On the third position frequently hydroxyproline, ev. hydroxylysine
Primary structure of collagen

Example of AA sequence of a part of the polypeptide chain

\(-\text{Gly-Pro-Hyp}\)-

Globular proteins rarely show periodicity in AA sequence.
Secondary structure of collagen

Comparison of collagen helix to the α-helix, which represents the most common secondary structure in proteins.

Collagen helix
- *levorotatory* helix
- steeper rising
- 3.3 AA/turn
- intrachain hydrogen bonds not present
- proline prevents formation of α-helix or β-pleated sheet

α-helix
- *dextrorotatory* helix
- gradual rising
- 3.6 AA/turn
- stabilization by intrachain hydrogen bonds
Triple helix

Three α-chains of collagen

Relatively rigid

This structure is responsible for the tensile strength.
Triple helix

The origin is dependent on the oddness of the primary structure

- High presence of glycine
 - smallest amino acid, no side chain (only -H)
 - placed in the centre of triple helix, where no space is available
 - close contact between the chains

Triple helix is stabilized by hydrogen bonds between each peptide bond -NH group of glycine and C=O group of the peptide bond of the adjacent polypeptide chain.
Collagen chains

The collagen chain is extraordinarily long and contains approximately 1000 AA.

The collagen chains are called $\alpha_1 - \alpha_3$.

- They differ in AA representation
- Products of different genes – e.g. $\alpha_1(I)$ or $\alpha_2(V)$
- Roman digit labels the collagen type

More than 30 different types of collagen exists.
Collagen chains

The representation of chains differs in individual types of collagens.

The collagens may form homotrimers or heterotrimers.

Homotrimers
- molecule of collagen is formed by three identical chains;
- e.g. collagen type III is formed by three $\alpha_{1(III)}$ chains

Heterotrimers
- molecule of collagen is formed by different chains;
- e.g. collagen type I is assembled of two $\alpha_{1(I)}$ chains and one $\alpha_{2(I)}$ chain
Collagen synthesis

Collagen is an example of a protein, whose synthesis is connected with many *posttranslational modifications* (treatment of the polypeptide chain), which take part intra- and extracellularly.
Synthesis and posttranslational modifications of collagen

1. **Synthesis of polypeptide chain**
2. Hydroxylation of proline and some lysine residues
3. Glycosylation of selected hydroxylysine residues
4. Formation of -S-S- bonds in extension peptides
5. Triple helix formation
6. **Secretion of procollagen**
Extracellular processes

Posttranslational modifications of collagen

- Proteolytic removal of propeptides
- Assembling of collagen fibrils
- Formation of cross-links
Posttranslational modifications in the course of collagen synthesis

INTRACELLULAR PROCESSES
Hydroxylation of proline and lysine residues

Enzymatically catalyzed reaction
- Prolylhydroxylase
- Lysylhydroxylase

Cofactors
- Vitamin C
- α-ketoglutarate

Dioxygenases contain Fe

Reaction needs oxygen. One O atom forms -OH group of hydroxyproline, the other becomes part of the originating succinate.
Hydroxylation of the proline and lysine residues

Reactions catalyzed by prolylhydroxylase

- Proline residue
 \[
 \text{H}_2\text{C}\text{CH}\text{CH}_2\text{C}=\text{O} + \text{O}_2 + \text{a-ketoglutarate} \rightarrow \text{4-hydroxyproline residue} + \text{CO}_2 + \text{succinate}
 \]

Vitamin C
- Maintains Fe\(^{2+}\) in a reduced state
- Dioxygenase contains Fe
Hydroxylation of proline and lysine

Reaction catalyzed by prolylhydroxylase

- reaction highly specific only for proline attached in the polypeptide chain to the amino group of the glycine

\[
\text{N-end} \quad \text{Gly-Pro-Ser-Gly-Pro-Pro-Gly-Leu-} \quad \text{C-end}
\]

\[
\text{Gly-Pro-Ser-Gly-Pro-Hyp-Gly-Leu-}
\]

Hydroxylation
Hydroxylation of proline and lysine

Importance of proline and lysine residues hydroxylation

Hydroxyproline
 • necessary for origin of triple helix by formation of hydrogen bonds between individual chains

Hydroxylysine
 • glycosylation on the formed -OH group
Deficiency of vitamin C

- Nonhydroxylated chain is not able to mature
- The stable triple helix cannot be formed
- Immediate degradation inside the cell
- Loss of collagen in the matrix
- Falling out of teeth
 - Vascular fragility
 - Poor wound healing
Vitamin C deficiency

Avitaminosis - scurvy

Manifestation of avitaminosis in oral cavity

- swollen reddish gums
- falling out of the teeth
Glycosylation

- Attachment of galactose or galactosylglucose to -OH group of the hydroxylysine

Enzymatically catalyzed reaction

- **Galactosyltransferase**
- **Glucosyltransferase**

Number of saccharide units depends on the type of collagen - e.g.:

- Type I (tendons) - 6 units
- Type II (lens envelope) - 110 units
Glycosylation

Glycosylated residue of hydroxylysine in the molecule of collagen

Mechanism of glycosylation is different than that in the glycosylation of serine or asparagine.
Formation of -S-S- bonds

Disulphide bonds
- in the region of C-terminal propeptides
 - interchain and intrachain disulphide bonds
- in the region of N-terminal propeptides
 - intrachain disulphide bonds

Importance
- necessary for initiation of triple helix formation
 - starts from the C-end
- secretion out of the cell
Formation of -S-S- bonds

C-end

N-end

intrachain disulphide bonds

interchain disulphide bonds
Procollagen

Function of propeptides
- Start the formation of triple helix in ER intracellularly.
- Prevent a premature fibril formation - extracellularly.
Posttranslational modifications in the process of collagen synthesis

EXTRACELLULAR PROCESSES
Cleaving of the propeptides

Extracellular proteinase
Aminopeptidase

PROCOLLAGEN

Extracellular proteinase
Carboxypeptidase

TROPOCOLLAGEN monomer

N-terminal propeptide of procollagen (PINP)

C-terminal propeptide of procollagen (PICP)

MARKERS OF BONE FORMATION (detection in serum or in plasma)
Tropocollagen

- Greek *tropé* - turn, induce a turn
- monomer of the collagen - mature molecule of collagen
- Mr = 300 000

TROPOCOLLAGEN

monomer

- **N-terminal telopeptide of collagen (INTP)**
 - nonhelical area of chains
- **C-terminal telopeptide of collagen (ICTP)**
 - nonhelical area of chains

MARKERS OF BONE DEGRADATION

(detection in serum or in the urine)
The way of aggregation of fibrillar collagen

- Regular arrangement along the row and in the adjacent row
- Monomers in one row are not linked end to end (gap 40 nm)
- The adjacent row is displaced by $\frac{1}{4}$ of the length
- In the arrangement of monomers act the weak noncovalent bonds
Assembling of collagen fibrils

Polymerisation

Tropocollagen

Collagen fibrils

Collagen fibers
Formation of cross-links

Collagen fibers are stabilized by formation of the covalent cross-links, which can be formed either within the tropocollagen molecule between the three chains – intramolecular cross-links and between the tropocollagen molecules – intermolecular cross-links.
Formation of cross-links

Function of cross-links

stabilization and strengthening of collagen fibril

Cross-linking

high breaking strength
lower extensibility
Formation of cross-links

Character of cross-links

- covalent bonds

Examples

- aldol cross-link
 - intramolecular
- pyridinoline a deoxypyridinoline cross-links
- histidine-aldol cross-link
 - intermolecular
Aldol cross-link

- Cross-link on the N-end of tropocollagen is formed between the lysine residues of two chains

Mechanism of formation

1. oxidative deamination of lysine, aldehyde formation
 - by the enzyme lysyloxidase
 - aminooxidase, containing \(\text{Cu}^{2+} \)
 - prosthetic group – pyridoxal phosphate

2. Aldol condensation of aldehyde groups
 spontaneous reaction, two aldehydes form a cross-link
Pyridinoline and deoxypyridinoline cross-link

- Cross-link between N-end of one tropocollagen molecule and C-end of the adjacent tropocollagen molecule

Pyridinoline
 - of 3 hydroxylysine residues

Deoxypyridinoline
 - of 2 hydroxylysine and 1 lysine residues
 - more specific for bone and dentine
Mechanism of origin

1. step - oxidative deamination of lysine to aldehyde
 ▫ catalyzed by lysyloxidase enzyme

2. step - formation of ketoamine
 ▫ nonenzymatic reaction of oxidized hydroxylysine with nonoxidized lysine (hydroxylysine)

\[
\text{-CH-CH}_2\text{-NH}_2 + \text{O=CH-CH-CH}_2 \rightarrow \text{-CH-CH}_2\text{-NH-CH}_2\text{-CO-CH}_2
\]

Pyridinoline and deoxypyridinoline cross-links
Pyridinoline a deoxypyridinoline cross-links

3. step - formation of the pyridine ring
 - Interaction of ketoamine with the free aldehyde group of the hydroxylysine closes the heterocyclic pyridine ring, linking covalently three different collagen chains

Intermolecular cross-bridge
Pyridinoline a deoxypyridinoline cross-links

- In the course of bone degradation these cross bridges are separated from collagen fibers, released to blood and excreted to urine.
- The pyridinoline and particularly the deoxypyridinoline bridges may be determined in blood and urine.

MARKERS OF BONE DEGRADATION
Overview of collagens - classes

Fibrillar collagens - e.g. types I, II, III, V
• "typical" collagens forming fibrils

Collagens associated with collagen fibrils - for example types VI, IX, XII, XIV, XVI
• Triple helix is interrupted by sections making possible the bending of the molecule.
• These collagens attach to the surface of collagen fibrils and join them together and connect them to other constituents of extracellular matrix

Net forming collagens - types IV, VIII and X
• Do not form typical fibrils
• Net like arrangement
• Nonhelical globular domains on the ends of the molecule
Overview of collagens-classes

Anchoring collagens - type VII
- forms anchoring fibers
- strengthen the connection of dermis and epidermis

Transmembrane collagens - types XIII and XVII
- integral membrane proteins
Overview of collagens

Some fibrilar collagens

<table>
<thead>
<tr>
<th>Type</th>
<th>Molecular structure</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$[\alpha_1(I)]_2 [\alpha_2(I)]$</td>
<td>widely present, skin, vessels, tendons, gingiva, bone, cement, dentin, periodontal ligaments</td>
</tr>
<tr>
<td>II</td>
<td>$[\alpha_1(II)]_3$</td>
<td>cartilage, vitreous body</td>
</tr>
<tr>
<td>III</td>
<td>$[\alpha_1(III)]_3$</td>
<td>skin, vessels, lungs, gingiva, cement, dentin, periodontal ligaments</td>
</tr>
<tr>
<td>V</td>
<td>$[\alpha_1(V)]_3, [\alpha_1(V)_2 \alpha_2(V)]$</td>
<td>skin, smooth muscle, bone, cement, dentin</td>
</tr>
</tbody>
</table>
Types of collagen

Some collagens associated with fibrils

<table>
<thead>
<tr>
<th>Type</th>
<th>Molecular structure</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>$[\alpha_1(\text{VI}) \alpha_2(\text{VI}) \alpha_3(\text{VI})]$</td>
<td>laterally associated with collagen type II, widely present, bone, gingiva, cement, periodontal ligaments</td>
</tr>
<tr>
<td>IX</td>
<td>$[\alpha_1(\text{IX}) \alpha_2(\text{IX}) \alpha_3(\text{IX})]$</td>
<td>laterally associated with collagen type II, cartilage, vitreous body, periodontal ligaments</td>
</tr>
<tr>
<td>XII</td>
<td>$[\alpha_1(\text{XII})]_3$</td>
<td>associated with collagen type I in soft tissues, periodontal ligaments</td>
</tr>
</tbody>
</table>
Overview of collagens

Some net forming collagens

<table>
<thead>
<tr>
<th>Type</th>
<th>Molecular structure</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>$[\alpha_1(IV)]_2 \ [\alpha_2(IV)]$</td>
<td>basal membranes, formation of two-dimensional net gingiva, periodontal ligaments</td>
</tr>
</tbody>
</table>
Disorders of collagen synthesis

Increased collagen synthesis
• fibroses

Decreased collagen synthesis
• genetic disorder
• acquired disorders
Disorders of collagen synthesis

Increased collagen synthesis - FIBROSIS

- hepatic cirrhosis
- pulmonary fibrosis
- atherosclerosis

Tissue damage stimulates collagen synthesis by fibroblasts
 - e.g. damaged hepatocytes are replaced by fibrous connective tissue – hepatic cirrhosis
Disorders of collagen synthesis

Increased collagen synthesis

- bacterial infections also stimulate collagen synthesis

Prevention of infection spreading – **ABSCES**

×

Some bacteria (Clostridia) produce collagenases, which degrade tropocollagen.
Disorders of collagen synthesis

Decreased collagen synthesis

- **Genetically conditioned**
 - Ehlers-Danlos syndrome
 - osteogenesis imperfecta

- **Acquired disturbances**
 - lathyrisim
 - copper deficiency
 - vitamin C deficiency
Disorders of collagen synthesis

Ehlers-Danlos syndrome

- heterogeneous group of diseases caused by defects of enzymes necessary for synthesis of collagen or by abnormalities in the procollagen gene

Manifestations

- extreme extensibility of connective tissue and skin
- hypermobility of joints
- contortionists
- risk of rupture of vessels or of the intestine
Disorders of collagen synthesis

Osteogenesis imperfecta

- group of diseases caused by mutation in collagen type I
- exchange of Gly for an AA having larger side chain
- formation of triple helix is not possible
- degradation of polypeptide chains not forming triple helix

Manifestations

- abnormal bone fragility
- bone fractures even in small injuries
- in more serious cases prenatal fractures

Lat. imperfectus incomplete
Disorders of collagen synthesis

Dentinogenesis imperfecta

- group of diseases caused by mutation in α_1(I)
- associated with osteogenesis imperfecta

Manifestations

- thin enamel
- discolouring of teeth (yellow, brown, grey)
- opalescence of the teeth
- lower mechanical resistance of the teeth
Disorders of collagen synthesis

Disturbance of cross-link formation

• Causes
 ▫ copper deficiency (part of lysyloxidase)
 ▫ animal food containing β-aminopropionitrile (contained in seeds of sweet pea – *Lathyrus odoratus*) - blocks lysyloxidase – lathyris

Manifestations
 extreme fragility of connective tissue (bones, vessels)
ELASTIN

Elastin is the main protein of elastic fibers, providing elasticity to the tissues.
Elastin

Occurrence

- in arteries, particularly in aorta
- in skin, tendons and loose connective tissue (relatively low content)
- in lungs

Synthesis takes place in early development or after tissue damage
Half-time is approximately 70 years (lower content in elderly people).
Elastin

Properties

EXTENSIBILITY AND CONTRACTILITY

- resembles the rubber
- after extension elastin is able to return to original size and original form
- tensile strength is lower than in collagen
- hydrophobic, practically insoluble in aqueous solutions
Primary structure of elastin

Occurrence of amino acids
- 1/3 glycine
- high content of nonpolar AA (Ala, Val, Leu, Ileu)
- low hydroxyproline
- no hydroxyllysine – elastin is not glycosylated

Sequence of amino acids
- typical triplet as in collagen is not present

Alternation of short hydrophobic and hydrophilic sections. Hydrophilic sections, which represent a minority part, are rich in lysine, which takes part in forming of cross-links.
Secondary and tertiary structure of elastin

Secondary structure
- elastin does not form a regular secondary structure
- elastin has an character of random coil conformation enabling extension and contraction

Tertiary structure
- a stable secondary structure is not expressed
Elastin synthesis

Synthesis of polypeptide chain

Hydroxylation of proline residues

Secretion of tropoelastin

Tropoelastin (globular structure, Mr = 70,000)

Formation of cross-links

Three-dimensional netting
Cross-links in elastin

Cross-links

- there is a large number of covalent cross-links in elastin
- some are similar as in collagen
- key step is an oxidative deamination of some lysine residues by copper-containing lysyloxidase (the same enzyme as in formation of cross-links in collagen)
- cross-links may be formed within one polypeptide chain or between 2 – 4 chains

- Desmosine
 - cross-link completely specific for elastin
 - arises from 4 side chains of LYSINE (3 oxidized and 1 nonoxidized)
 - determines the high elasticity of elastin

Linking of polypeptide chains of elastin by cross-links constitutes a three-dimensional netting explaining the „rubber-like“ properties of elastin.
GLYCOSAMINOGLYCANS
Glycosaminoglycans (GAG) (Mucopolysaccharides)

Characteristic

- heteropolysaccharides (100% polysaccharides)
- not branched polysaccharide chains
- long chains (70 – 200 monosaccharides)
- repeating disaccharide units

Muco - these substances were first detected in mucus
Glycosaminoglycans

Polysaccharide chain of GAG is formed by repeating disaccharide units.

\[[\text{URONIC ACID} - \text{AMINO SUGAR}]_n\]

OR

\[[\text{MONOSACCHARIDE} - \text{SULFONATED AMINO SUGAR}]_n\]
Glycosaminoglycans

Uronic acids present in GAG

D-glucuronic acid

L-iduronic acid (5-epimer)
Glycosaminoglycans

Amino sugars present in GAG

N-acetylglucosamine

N-acetylgalactosamine (4-epimer)
Glycosaminoglycans

Modifications of amino sugars in GAG

- Acetylation of aminogroup – elimination of a positive charge
- Attachment of a sulphate on OH C-4 or C-6 (ester bond), or on nonacetylated amino group – increase of a negative charge
Glycosaminoglycans

Characteristics

• high number of acidic groups
 ▫ - COO⁻ (uronic acids)
 ▫ - OSO₃⁻ (amino sugars with sulphate groups)

• highly negative charge at physiological pH (polyanions)
Glycosaminoglycans

Characteristic (cont.)

- chains repel each other and in solution tend to straighten
- negatively charged groups bind cations – Na\(^+\), K\(^+\)
- osmotically active
- strongly hydrophilic (1 g proteoglycans/50 g of water)
 - occupy larger volume when compared with proteins
- in low concentrations form hydrated gel
 - determine the turgor of extracellular matrix
- act as a filter allowing the diffusion of small molecules (e.g. ions, water) and prevents the diffusion of proteins and movement of cells
Glycosaminoglycans

Types of glycosaminoglycans

Seven types (groups) of GAG

- differ in occurrence of monosaccharides, type of glycoside bond, grade and localisation of sulphate groups
Groups of glycosaminoglycans

Chondroitin-4-sulphate
- cartilage
- bone
- vascular wall
- aorta
- cornea
- dentin, cement
- gingiva, periodontal ligaments

Chondroitin-6-sulphate
- embryonal connective tissue
- heart valves
- cartilage
- bone
- vascular wall, aorta
- cornea
- predentin, cement
- periodontal ligaments

Repeating disaccharide
GLUCURONATE
+ N-ACETYLGALACTOSAMINE-4-sulphate

Repeating disaccharide
GLUCURONATE
+ N-ACETYLGALAKTOSAMINE-6-sulphate
Groups of glycosaminoglycans

Chondroitin-4-sulphate Chondroitin-6-sulphate

Both are the most abundant GAG in the body
Both bind collagen and firmly connect the fibrils.
Depletion of chondroitinsulphate in the cartilage is the main cause of osteoarthritis.
Groups of glycosaminoglycans

Keratansulphate
- intervertebral disc
- bone
- cornea
- predentin, cement
- periodontal ligaments

Repeating disaccharide
\[
\text{GALACTOSE} + \text{N-ACETYLGLUKOSAMIN-6-sulphate}
\]
No uronic acid !!

Dermatansulphate
- predominantly in skin
- vessels, heart valves
- tendons
- lungs
- gingiva, periodontal ligament
- cement

Repeating disaccharide
\[
\text{IDURONATE} + \text{N-ACETYLGLAcTOSAMIN-4-sulphate}
\]

Differs from chondroitin-4-sulphate only by inverse configuration on C-5 in glucuronate, changed by epimeration to iduronate.
Groups of glycosaminoglycans

Heparin
- deposited intracellularly in granules of mastocytes along arteries in the liver, lungs and skin
- anticoagulant effect

Heparansulphate
- extracellularly deposited in basal membranes and cell surfaces
- larger than heparin
- gingiva, periodontal ligaments, cement

Repeating disaccharides
IDURONAT-2-SULPHATE + N-SULPHO-GLUCOSAMIN-6-SULPHATE
Groups of glycosaminoglycans

Hyaluronic acid (hyaluronate)

Repeating disaccharide

GLUCURONATE + N-acetyl-GLUCOSAMIN

Both monosaccharide units are glucose derivatives. They do not contain any sulphate groups.

- Characterized by abnormal length (up to 25 000 disaccharide units - Mr $10^6 - 10^7$)
- Polysaccharide chain is coiled to levorotatory helix stabilized by intramolecular hydrogen bonds.
Groups of glycosaminoglycans

Hyaluronic acid (hyaluronate)

Occurrence
- proteoglycan aggregates
- vitreous body
- synovial fluid (lubricating function)
- umbilical cord
- production increases during wound healing
- gingiva, periodontal ligaments
- cement
Groups of glycosaminoglycans

Hyaluronic acid (hyaluronate)

Hyaluronate unlike other GAG is not bound covalently to any core protein.

X

Hyaluronate forms with other proteoglycans aggregates.
Proteoglycans are attached noncovalently to hyaluronate by the N-end domain of the core protein (electrostatic interaction) with the help of link protein.
Glycosaminoglycans

Forms of GAG existence

- part of larger structures (proteoglycans)

- independent molecules (heparin, hyaluronate)
PROTEOGLYCANS

Proteoglycans are formed by glycosaminoglycans, attached to core protein.
Proteoglycans

Glycosaminoglycan
(non branched saccharide chain)

Proteoglycan aggregate
(proteoglycans and hyaluronate)

Proteoglycan
(glycosaminoglycans and core protein)

Hyaluronate
Proteoglycans

Function of proteoglycans

- increase of the pressure resistance
- sieve for macromolecules - restriction of their diffusion
- lubrication effect
- hydration of joint cartilages
- adhesion of cells and their migration
- involvement in the development of cells and tissues
- binding of signal molecules
- in bone tissue - binding of calcium salts
Proteoglycans

Glycosaminoglycans (except for hyaluronate) are covalently bound to so called core protein.

Parts of proteoglycans

- Glycosaminoglycans (polysaccharides) 95%
- Protein 5%
Proteoglycans

Attachment of glycosaminoglycan chain to core protein:

- **O-glycoside bond**
 - Through the reaction of -OH group of serine or threonine of the core protein with trisaccharide \(\text{Xyl-Gal-Gal} \)

- **N-glycoside bond**
 - Through the reaction of amide nitrogen of asparagine
Proteoglycans

- Proteoglycans are characterized by structural diversity:
 - different core proteins
 - different GAG chains
 - different length of GAG chains

- Proteoglycans differ also in localisation:
 - proteoglycans attached to basal membrane
 - interstitial proteoglycans
Selected proteoglycans

<table>
<thead>
<tr>
<th>Proteoglycan</th>
<th>Typ GAG</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versican</td>
<td>chondroitinsulphate dermatansulphate</td>
<td>forms proteoglycan aggregates with hyaluronate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• cartilage, gingiva</td>
</tr>
<tr>
<td>Aggrecan</td>
<td>chondroitinsulphate keratansulphate</td>
<td></td>
</tr>
<tr>
<td>Decorin</td>
<td>chondroitinsulphate dermatansulphate</td>
<td>• binds to collagen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• belongs to a group of small proteoglycan rich in leucine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• gingiva</td>
</tr>
<tr>
<td>Perlecan</td>
<td>heparansulphate</td>
<td>• present in basal membrane</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• long core protein</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• forms a barrier limiting penetration of macromolecules through the basal membrane</td>
</tr>
</tbody>
</table>
Selected proteoglycans

<table>
<thead>
<tr>
<th>Proteoglycan</th>
<th>Occurrence in tissues of oral cavity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Versikan</td>
<td>periodontal ligaments, cement</td>
</tr>
<tr>
<td>Aggrecan</td>
<td></td>
</tr>
<tr>
<td>Decorin</td>
<td>periodontal ligaments, cement, dentine</td>
</tr>
<tr>
<td>Perlecan</td>
<td>development of different tissues</td>
</tr>
</tbody>
</table>
ADHESION GLYCOPROTEINS

Ensure specific interactions between cells and molecules of extracellular matrix.
Adhesion glycoproteins

- Functions of adhesion glycoproteins
 - attachment of cells to extracellular matrix
 - organization of the compounds of extracellular matrix

- Long flexible molecules with several binding sites for:
 - collagen
 - other matrix proteins
 - polysaccharides
 - cell receptors (integrins - cell adhesion receptors)
Adhesion glycoproteins

• Selected representatives of adhesion glycoproteins
 ▫ fibronectin
 ▫ laminin
 ▫ osteonectin
 ▫ chondronectin
Adhesion glycoproteins

- **Fibronectin**
 - Formed by two subunits arranged to the shape of letter V
 - **Binding sites for:**
 - collagen,
 - heparansulphate,
 - hyaluronate
 - integrins
 - Functions as a connection of cells in extracellular matrix containing fibrillar collagen
Adhesion glycoproteins

• Laminin
 ▫ Formed by three different chains arranged to the shape of cross
 ▫ High relative molecular mass Mr = 950 000
 ▫ Binding sites for:
 • collagen of type IV
 • heparansulphate,
 • hyaluronate,
 • cell adhesion receptors
 ▫ Adhesion glycoprotein of the basal membrane - connect collagen type IV and other compounds of the membrane