LIPIDS sterol lipids

Marek Vecka

CLASSIFICATION OF LIPIDS

- molecular structure

Lipid class	Abbreviation	N of known structures
Fatty acyls	FA	5869
Glycerolipids	GL	7541
Glycerophospholipids	GP	8002
Sphingolipids	SP	4338
Sterol lipids	ST	2715
Prenol lipids	PL	1259
Other – saccharolipids, polyketides	SL, PK	1293+6742

Fahy 2005, Fahy 2009

STEROL LIPIDS = lipid molecules with backbone derived from cyclopenta[a]phenanthrene (?)

Division according to biochemical function

1. Sterols

cholesterol, phytosterols, marine sterols...

2. Bile acids and derivatives

C24, C26, C27, C28 bile acids, bile alcohols

3. Steroids

C18 steroids, C19 steroids, C21 steroids

4.Secosteroids

vitamins D

Other groups

conjugates, hopanoids, ...

Structures

1. Numbering system for C27 *four-ring system first*

C's on attached methyls

side chain

Structures

2. Stereochemistry

Ring position

Conventions:

Ring position: *cis*- (remaining 4th bonds of common C-C are *cis*-) (A-B *cis*-: bile acids) vs. *trans*- (remaining 4th bonds of common C-C are *trans*-) (all : cholesterol)
 Substituents: α- (below cycle plane) vs. β- (above cycle plane)

Structures

3. Important hydrocarbon structures

C18 structures: estrasteroid hormones C19 structures: androstasteroid hormones C21 structures: pregnasteroid hormones C24 structures: cholabile acids/alcohols C27 structures: cholestacholesterol, oxysterols

CLASSIFICATION OF LIPIDS

- biosynthetic route

Biosynthesis of sterols (cholesterol)

- **1.** Biosynthesis of isopentenyldiphosphate
 - = activated isoprene unit
- **2.** Condensation of isopentenyldiphosphate units
 - 6 units are needed (C30)
- **3. Cyclization of squalene to lanosterol** oxygen needed
- 4. Further modification of lanosterol to cholesterol C30 \rightarrow C27 (three CH₃ have to be removed) migration of double bond and reduction of the other

Biosynthesis of sterols (cholesterol)

1. Biosynthesis of isopentenyldiphosphate

= activated isoprene unit

<u>biosynthesis of HMG-CoA</u> (hydroxymethylglutaryl CoA) - takes place in cytosol

Biosynthesis of sterols (cholesterol)

- **1.** Biosynthesis of isopentenyldiphosphate
 - = activated isoprene unit

biosynthesis of mevalonate via HMG-CoA reductase irreversible reaction rate limiting step of synthesis - takes place in ER

Inhibitors = statins

Biosynthesis of sterols (cholesterol)

Regulation of HMG-CoA reductase

1. directly by phosphorylation (inactive)/dephosphorylation (active) AMP/ATP ratio responsive AMP activated protein kinase glucagon, noradrenaline (↑cAMP) → inhibition of CH biosynthesis insulin (↓cAMP) → stimulation of CH biosynthesis

2. transcriptionally via SREBP binding to SRE

cholesterol feedback

3. enzyme degradation INSIG dependent

Biosynthesis of sterols (cholesterol)

1. Biosynthesis of isopentenyldiphosphate

= activated isoprene unit

activation of C6 decarboxylation (→C5 unit) takes place in cytosol

Biosynthesis of sterols (cholesterol)

2. Condensation of isopentenyldiphosphate units

C5 units can isomerize (IPP \leftrightarrow DMAP)

a) IPP + DMAP = GPP
b) GPP + IPP = FPP
c) 2 FPP = SQ

takes place in ER peroxisomes

Biosynthesis of sterols (cholesterol)

3. Cyclization of squalene to lanosterol oxygen is needed

procaryota do not synthesize sterols

Biosynthesis of sterols (cholesterol)

4. Further modification of lanosterol to cholesterol C30 \rightarrow C27 (three CH₃ have to be removed) migration of double bond

reduction of double bond at C24

Function of cholesterol biosynthetic pathway

Inborn errors of biosynthesis of cholesterol

1. SLOS syndrome

= 3rd most common (US) (after CF and PKU)
deficiency of d7-DHC dehydrogenase prevalence 1:20-60 000
multiple congenital anomalies mental retardation
syndactyly
growth retardation

Fates of cholesterol

1. Membrane component

free (unesterified cholesterol) fluidity modulation

2. Substrate for further metabolization

→ bile acids (liver/skin/brain/peripheral nervous tissues)

CH elimination/lipid absorption/ signalling

→ steroid hormones (steroidogenic tissues) hormones

→ oxysterols (various tissues) signalling / CH elimination

3. Storing in droplets

as cholesteryl esters (CE) CH storage

- 4. Releasing into the circulation
 - → via HDL (peripheral tissues/intestine) excess CH
 - \rightarrow via VLDL (liver) CH source

Phytosterols

Phytoanalogs of cholesterol

membrane structure phytohormones

Dietary content 100 – 400 mg/day

decreased CH absorption

Oxysterols

Oxygenated derivatives of cholesterol

- Formation
- 1. enzymatically hydroxylases, monooxygenases
- 2. nonenzymatically ROS attack on sterol molecule

Effects of oxysterols

intermediates in biosynthesis
 (steroids/bile acids)
ligands for nuclear receptors
 (regulation of CH biosynthesis)
transport of CH (from brain)

Major excretion form of CH in humans

Biosynthesis of bile acids

- in liver, 17 enzymes in total
- 1. hydroxylation
- CYP450/mixed function oxidase system (microsomal)
- 2. side chain cleavage mitochondria/cytosol/px
- 3. conjugation with glycine, taurine

lowering toxicity and more amphipatic (easily secreted in bile)
 Secondary modifications

bacterial conversion

Rate-limiting

Biosynthesis of bile acids

two pathways

1. classical pathway

cholyl/chenodeoxycholyl CoA are produced
cholyl CoA:
major BA in bile (up to 30% of BAs) **2. acidic pathway**chenodeoxycholyl CoA is produced

major BA in bile (up to 50% of BAs)

Major excretion form of CH in humans

Primary bile acids formed in liver $pK_a \approx 6$ \rightarrow at pH = 7.4 not fully ionized

Conjugation (bile "salts")

from the CoA derivatives
in peroxisomes
needed for secretion into bile
BA/AA N-acyl transferases
pK_a << 6
→ at pH = 7.4 fully ionized
→ more amphipatic</pre>

Major excretion form of CH in humans

Secondary bile acids in intestine – microbiome

Major excretion form of CH in humans

Functions of bile acids lipid digestion – emulsifiers emulsification of FC, CE, TAG, fat soluble vitamins \rightarrow more accesible to pancreatic lipase prevent CH precipitation in bile excretion of cholesterol (humans are not able to degrade CH) ligands for nuclear receptors control of BA metabolism control of Glc and lipid homeostasis, liver regeneration increase intestinal motility

Major excretion form of CH in humans

Recycling of bile acids

up to 95% BA is recycled

enterohepatic circulation

CHOLESTEROL - precursor of steroid hormones

- Progestagens
 Glucocorticoids
- 3. Mineralocorticoids
- 4. Androgens/gestagens

Mode of action of steroid hormones

Endocrine action

Unbound form of hormone in the circulation \rightarrow diffusion to the target cell \rightarrow passing through membrane \rightarrow binding with receptor \rightarrow interaction with hormone responsive DNA sequence $\rightarrow \rightarrow$ protein production

Main sites of production

Progestagens (progesterone) corpus luteum, mammary gland Androgens (testosterone) testes Estrogens (estrone) ovary Glucocorticoids (cortisol) zona fasciculata (adrenal cortex) Mineralocorticoids (aldosterone) zona glomerulosa (adrenal cortex)

Functions of steroid hormones

Progestagenes (progesterone)

– release of oocyte, facilitation of implantation Androgenes (testosterone)

development of secondary sexual characteristics in men
 Estrogenes (estrone)

development of secondary sexual characteristics in women, ovarial cycle

Glucocorticoids (cortisol)

propagation of gluconeogenesis (synthesis of glycogen),
 inhibition of inflammation, stress adaptation, immune system
 Mineralocorticoids (aldosterone)

- increased reabsorption of Na⁺ and excretion of K⁺ / H⁺ \rightarrow increase in V and blood pressure

Adrenal steroid hormones

zona fasciculata

Adrenal steroid hormones zona reticularis

Adrenal steroid hormones

zona glomerulosa

Gonadal steroid hormones

testes

Gonadal steroid hormones

ovary

VITAMINS D

Secosteroids = one/more cycles are broken Vitamin D₃ (cholecalciferol) control of Ca²⁺ and phosphate metabolism effects on immune system biosynthesis from 7-dehydrocholesterol (skin) inactive prohormone \rightarrow further hydroxylations 25-OH vitD₃ in liver; 25,1 α -(OH)₂ vitD₃ (active) in kidney

VITAMINS D

Secosteroids = one/more cycles are broken

Vitamin D₂ (ergocalciferol)

commercial analogue of vit D_3 (irradiation of ergosterol) effects and metabolization similar to vit D_3

Further reading

Textbooks, monographs
 Biochemistry of Lipids, Lipoproteins and Membranes (5th Ed); Vance DE, Vance Je (Eds.), Elsevier, Amsterodam (The Netherlands) 2008
 Lehninger Principles of Biochemistry (6th Ed); Nelson DL, Cox MM (Eds.), Susan Winslow, New York (U.S.A.) 2013

Harper's Illustrated Biochemistry (28th Ed); Murray RK, Bender DA, Botham KM, Kennely PJ, Rodwell VW, Weil PA (Eds.), McGraw-Hill, New York (U.S.A.) 2009

Noncholesterol sterols; Vecka M, Žák A, Tvrzická E, Karolinum Press, Prague (Czech Republic) 2008

Articles

Vance DE, Van den Bosch H: Cholesterol in the year 2000. Bioch Biophys Acta 2000; 1529: 1-8.

Brown AJ, Jessup W: Oxysterols: Sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis. *Mol Aspects Med* 2009; **30**: 111–122.

- Monte MJ, Marin JJG, Antelo A, Vazquez-Tato J: Bile acids: Chemistry, physiology, and pathophysiology. *World J Gastroenterol* 2009; **15**: 804-816.
- Payne AH, Hales DB: Overview of Steroidogenic Enzymes in the Pathway from Cholesterol to Active Steroid Hormones. *Endocr Rev* 2004; **25**: 947–970.
- DeLuca HF: Overview of general physiologic features and functions of vitamin D. *Am J Clin Nutr* 2004; **80(suppl**): 1689S–96S.

Web sources

http://www.cyberlipid.org http://lipidlibrary.aocs.org http://www.lipidmaps.org http://www.chem.qmul.ac.uk/iupac - IUPAC Nomenclature page http://themedicalbiochemistrypage.org - the Medical Biochemistry Page