LIPIDS oxylipins

Marek Vecka

OXYLIPINS

OXYLIPINS = oxygenated fatty acids biologically active as lipid mediators

eicosanoids

products of transformation of FA with 20 C
 AA (20:4n-6), EPA (20:5n-3), DHGLA (20:3n-6)

docosanoids

products of transformation of FA with 22 C
 DHA (22:6n-3)

octadecanoids

products of transformation of FA with 18 C
 ALA (18:3n-3) (important to plants)

OXYLIPINS

OXYLIPINS = oxygenated fatty acids biologically active as lipid mediators

- I. production by enzymes
 FA are transformed via several pathways:
 Cyclic structures of oxylipins
- **1. cyclooxygenase pathway** Linear structures of oxylipins
 - 2. lipoxygenase pathway
 - 3. epoxygenase pathway

oxidative stress

II. nonenzymatic production

- the reactions are catalysed by free radicals in vivo
- reactions usually lack stereospecificity

Oxylipins derived from 20 C fatty acid precursor inhibited by glucocorticoids 个lipocortins = inhibitors of PLA,

Arachidonate pathway (cascade)

I. Initiation: AA release from PL by PLA₂

II. Further metabolization by enzymes

- prostanoids (prostaglandins (PG) + thromboxanes (Tx))
- Leukotrienes (LT)
- Lipoxins (Lx)
- **HETEs, EETs**

oxylipin pathways (cascades)

mode of action – ligands of receptors

Mode of action
1. ligands of receptors
(G-protein coupled)
2. interaction with nuclear receptors

Short half lives (sec – 5 mins)

- only autocrine/paracrine action
- produced in many cell types (x not in specialized glands)
 PG (many cell types)
 Tx (platelets/endothelium)
 LT (immune system), Lx (immune system)
 wide variety of effects

Nomenclature of prostanoids

theoretically from prostanoic acid structure

20 C structure cyclopentane ring substituents are added *transon adjacent carbons*

1. type of ring structure (the third letter)

Nomenclature of prostanoids

2. number of double bonds present (the number)

LEUKOTRIENES

Oxylipins derived from 20 C fatty acid precursor

leukos → white blood cells
 dendritic cells
biosynthetic pathway
1. lipoxygenase (5-LOX)
 in nuclear membrane
LTA4
 branching point

TA4 hvdrogenase

LTB4

 in leukocytes, promotes inflammation enhances extravasation, chemoattractant (mechanism)

LEUKOTRIENES

Oxylipins derived from 20 C fatty acid precursor

LTA4 branching point b)LTC4 synthase LTC4, LTD4, LTE4 = peptide leukotrienes (glutathione residue)

promote inflammation

enhance bronchoconstriction (asthma!)

smooth muscle constriction, vasoconstriction (LTs 100 x more potent than histamine (hist acts in early stage), late response) mediate allergic reaction: *Slow Reacting Substance of Anaphylaxis (SRS-A)* mediate later response to an allergen

LEUKOTRIENES

Oxylipins derived from 20 C fatty acid precursor

Pharmacology note

- LT rec antagonists (cysLT1 rec)
- LT induce bronchospasms ______ asthma treatment

generic names -lucasts montelukast, zafirlukast, pranlukast

Oxylipins derived from 20 C fatty acid precursor

Prosta-→ prostate (1st isolation of PG from seminal fluid) biosynthetic pathway 1. cyclooxygenases (COX-1, COX-2)

PGH2 branching point precursor for prostaglandins thromboxanes

Oxylipins derived from 20 C fatty acid precursor

Cyclooxygenases (prostaglandin endoperoxide H synthases)enzymes catalyzing transformation of $AA \rightarrow PGG2 \rightarrow PGH2$ located in ER/nuclear envelope

COX-1

constitutive in many tissues

COX-2

inducible (constitutive in kidney/brain)
induced by NFkB (proinflamm. transcr fact)
lower substrate specificity than COX-1
(+DHGLA, EPA, 2-AG, anandamide...)

Oxylipins derived from 20 C fatty acid precursor

Prostaglandin effects

1. Essential homeostatic functions

GIT

- cytoprotection of gastric mucosa (PGs) increase mucus, water, and electrolyte secretion in the stomach (and the intestine)
- decrease in transit time

PGE2 and PGF2a: increase the rate of longitudinal contraction

renal physiology

PGE2: maintaining vascular tone, blood flow, and salt and water excretion (Na⁺ reabsorption)
PGI2 (PGE2?): increases K⁺ secretion
PGI2: vasodilator → renal blood flow ↑

Oxylipins derived from 20 C fatty acid precursor

Prostaglandin effects

1. Essential homeostatic functions

smooth muscles

- vascular

PGE2, PGI2: vasodilatation (\uparrow blood flow \rightarrow can prolong oedema)

- bronchial

PGFs: bronchial contraction

PGEs: bronchial relaxation

blood physiology

PGE2: erythropoiesis induction (↑ renal EPO release) PGI2, PGE2: inhibition of platelet aggregation PGI2, PGD2: inhibition of histamine release

Oxylipins derived from 20 C fatty acid precursor

Prostaglandin effects

1. Essential homeostatic functions

brain/peripheral neuronal tissue

- body temperature

PGD2: ↓body temperature during sleep (sleep induction)
PGE2: ↑body temperature as an inflammatory response
thermal centre in brain (anterior hypothalamus)

- pain

dorsal root ganglion neurons expressing IP receptor (PGI2) PGD2, PGE2: inflammatory pain (*sensitizing pain receptors*)

Oxylipins derived from 20 C fatty acid precursor

Prostaglandin effects

2. Special circumstances

Birth induction, gestation

PGE2, PGF2a: uterine smooth muscle contraction (pregnancy) x nonpregnant: PGE2 contraction, PGF2a relaxation of uterus Maintain patent DA (ductus arteriosus)

DA : contains muscle sensitive to oxygen tension (low O2) vasoactive substances (PGE2 vasodilat.) (neonatal cardiac surgery)

Oxylipins derived from 20 C fatty acid precursor

Prostaglandin effects

2. Special circumstances

Inflammation

PGE2: pro-inflammatory (fever induction, pain enhanc.)

anti-inflammatory [inhibits LO-5(LT) and lymphoc. proliferation] PGI2: mediator of pain and oedema PGD2: in mast cells

Treatment by prostanoids - special cases Raynauld's disease

overreaction of limbs to cold/stress → cold fingers/toes in pain PGEs as vasodilators

Glaucoma (open-angle)

clogged eye's drainage canals → ↑internal eye pressure →
 damage to the optic nerve
 PGEs, PGFs: ↑ outflow of aqueous humor
 (cave: change in iris color, ↑growth of eyelashes)

Peptic ulcers

high doses NSAID \rightarrow acidic + \downarrow protection of GIT \rightarrow ulcers PGE1: restoration of PG protective effects

Erectile dysfunction

damaged function of corpora cavernosa PGE1: vasodilator $\rightarrow \uparrow$ blood flow

Oxylipins derived from 20 C fatty acid precursor

Thromboxanes thrombus \rightarrow platelets (clotting) biosynthetic pathway 1. TX synthase in ER TxA2 induction of vasoconstriction platelet aggregation (~30s) spontaneously TxB2 inactive

LIPOXINS

Lipoxygenases products of arachidonic acid II

Lipoxins Inflammation

Resolution of inflammation

PMN infiltration↓ antiangiogenic effects chemoattraction of monocytes →wound healing
I. airways (monocytes/epithelium)
II. platelets (need LTA4)

III. aspirin \rightarrow forming epi-LXs

EPOXYEICOSATRIENOIC AND HYDROXYEICOSATETRAENOIC ACIDS CYP450 monooxygenases products from arachidonic acid

AA is transformed via monooxygenases

ion transport regulation vascular tone? renal/lung function

hypertension?

cancer progression?

Non-steroidal inhibition of COXs

Arachidonate pathway (cascade)

AA must be released from PL by PLA₂

free AA is metabolized

NSAIDs: act on distal part of the AA cascade

extracelullar space cvtoplasm 0arachidonic acid membrane lysoPL PL COX-1 COX-2 LOs prostanoids leukotrienes HETES other products

(steroids)

inhibited by glucocorticoids

Non-steroidal inhibition of COXs

types of NSAID 1. Irreversible inhibitors aspirin: acetylation of COXs serine530 (1971 Vane et al.)

 \rightarrow AA cannot reach the active site of COXs

ancient Egypt: treating fever with bark of willow 1826-8 isolation of salicin (bark of willow/poplar trees)

Aspirin: better tolerated

Non-steroidal inhibition of COXs

types of NSAID

2. reversible inhibitors of COX-1 and COX-2

competing with AA on the active site of enzymes

 \rightarrow inhibition of all PG production

via COX-1 (→unwanted side effects):
including protective effect on GIT mucosa → ulcers (20% long-term)
 (some are prodrugs not active in stomach → ulcers ↓)
 via COX-2 (→beneficial effects):

inflammatory/fever/pain responses

indomethacin, acetaminophen (not for inflammation)

some NSAIDs can also lower LO \rightarrow LT \downarrow

(some NSAIDs and antiinflammatory effects \uparrow diclofenac)

COX-2

selective

10 x

equipotent

COX-1

10 x

selective

Non-steroidal inhibition of COXs

types of NSAID
 a. reversible inhibitors of COX-2 (coxibs)
 COX-1 isoenzyme is affected only marginally rofecoxib, celecoxib
 → only inducible effects of COX products are inhibited by inflammation... (not brain/kidney)
 - platelets (COX-1) 4 TxA2 production ↑ (some coxibs and MI ↑)

- effects on brain? (for those crossing BBB)

ESSENTIALITY OF FA

AA vs ALA/EPA/DHA

arachidonic acid (AA) is main precursor for eicosanoids in human comes from dietary sources

Oxylipins derived from 20 C fatty acid precursor

arachidonic acid (AA) is not sole substrate for the enzymes

other eicosanoids from

eicosapentaenoic acid EPA, (20:5n-3) dihomo-y-linolenic acid DHGLA, (20:3n-6)

Thromboxane A₃ (TxA₃)

Leukotriene A₅ (LTA₅)

Prostaglandin E₂ (PGE₂)

Prostaglandin E₃ (PGE₃)

DHGLA (20:3n-6)

Prostaglandin E₁ (PGE₁)

EICOSANOIDS II

Eicosanoids formed from other FA than AA eicosapentaenoic acid (EPA) can be also precursor for eicosanoids in human also comes from dietary sources

EPA EICOSANOIDS

EPA analogues of AA metabolites

Thromboxanes series 3 vasodilatating Prostaglandins series 3 antiarrhytmic antiinflammatory Leukotrienes series 5 antiinflammatory

DOCOSANOIDS

Oxylipins derived from DHA

DHA is not a substrate for COX (unless aspirin acetylated)

Neuroprotectins (neuroprotective effects) antiinflammatory mode of action

 \rightarrow resolution of inflammation (resolvins)

EFFECTS OF PUFAn-3

Oxylipins derived from DHA, EPA are beneficial

DHA, EPA are essential FA

I. dietary sources
recommended ratio (PUFAn-6/PUFAn-3)
1-4/1
typical western diet:
14-25: 1

hunter-gatherers agricultural society industrial society percentage of energy from fatty acids (%) 40₁ 30 total fat 20 Fatty acids trans F saturated FA PUFA n-6 10 PUFA n-3 4 My BC 10 000 BC 1800 1900 2000

II. supplementation

NONENZYMATIC PRODUCTION OF OXYLIPINS

FA bound in PL are oxidized nonenzymatically

Relatively high ROS (oxidative stress)
→ attack of C=C in PUFA-PL (-OOH, =O, -OH)
→ cyclizations, fragmentations
(some further reaction can be enzymatic)

arachidonic acid → isoprostanes series 2 eicosapentaenoic acid → isoprostanes series 3 linoleic acid → HODEs docosahexaenoic acid → neuroprostanes

indicators of oxidative stress

Further reading

Textbooks, monographs

Biochemistry of Lipids, Lipoproteins and Membranes (5th Ed); Vance DE, Vance Je (Eds.), Elsevier, Amsterodam (The Netherlands) 2008

Lehninger Principles of Biochemistry (6th Ed); Nelson DL, Cox MM (Eds.), Susan Winslow, New York (U.S.A.) 2013 Harper's Illustrated Biochemistry (28th Ed); Murray RK, Bender DA, Botham KM, Kennely PJ, Rodwell VW, Weil PA

(Eds.), McGraw-Hill, New York (U.S.A.) 2009 *Bioactive lipids*; Nicolau A, Kokotos E (Eds.), The Oily Press, Bidgwater (UK) 2004

Articles

- Harizi H, Corcuff J-B, Gualde N: Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology . *Trends Mol Med* 2008; **14**: 461-469.
- Hammond VJ, O'Donnell VB: Esterified eicosanoids: Generation, characterization and function. *Biochim Biophys Acta* 2012; **1818**: 2403–2412.
- Serhan CN, Chiang N: Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus. *Brit J Pharmacol* 2008; **153**: S200–S215.
- Rao PNP, Knaus EE: Evolution of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs): Cyclooxygenase (COX) Inhibition and Beyond. *J Pharm Pharmaceut Sci* 2008; **11**: 81s-110s.
- Simopoulos AP: The importance of the ratio of omega-6/omega-3 essential fatty acids. *Biomed Pharmacother* 2002; **56**: 365–379.
- Roberts LJ, Fessel JP: The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. *Chem Phys Lipids* 2004; **128**: 173–186.

Web sources

http://www.cyberlipid.org http://lipidlibrary.aocs.org http://www.lipidmaps.org http://www.chem.qmul.ac.uk/iupac - IUPAC Nomenclature page http://themedicalbiochemistrypage.org - the Medical Biochemistry Page