LIPIDS TAG, PL and SL metabolism

Marek Vecka

TWO BIOSYNTHETIC PATHWAYS IN MAMMALS

liver, adipose tissue

- use mainly phosphatidate pathway ("Kennedy pathway")

intestine

monoacylglycerol pathway

mammary glands

use phosphatidate pathway

I. PHOSPHATIDATE PATHWAY

= Kennedy pathway

1. synthesis of *sn*-glycerol-3-phosphate

2. synthesis of phosphatidic acid (PA)- PA can be utilized for PL synthesis3. synthesis of TAG

I. PHOSPHATIDATE PATHWAY

1. Synthesis of *sn*-glycerol-3-phosphate

- from glycerol in liver
- from glycolytic product dihydroxyacetonephosphate in liver << adipose tissue, muscles
- from pyruvate
 - in adipose tissue

PEP carboxykinase _{cyt} phosphoenolpyruvate

I. PHOSPHATIDATE PATHWAY

2. Synthesis of phosphatidic acid

- addition of fatty acyls to the positions *sn*-1 and *sn*-2

I. PHOSPHATIDATE PATHWAY

2. Synthesis of phosphatidic acid

- in the endoplasmic reticulum
- many acyltransferases known use Acyl CoA

G3P acyltransferase

LPA acyltransferase

I. PHOSPHATIDATE PATHWAY

3. Synthesis of TAG

- conversion of PA into TAG

- in endoplasmic reticulum

DAG acyltransferase

II. MONOACYLGLYCEROL PATHWAY

Occurence

- enterocytes utilize 2-MAG taken from intestinal lumen
- formation of 2,3-DAG is also possible

Metabolic fate of intracellular TAG

overview

- stored TAG are hydrolyzed into fatty acids + glycerol

Metabolic fate of intracellular TAG

1. Fatty acids as E source

- conversion into activated FA CoA

2. Fatty acids as part of lipid biosynthesis

- used for resynthesis of TAG, synthesis of PL (+ VLDL in liver)
- synthesis of sphingolipids (sphinganine + acyl moiety)

3. Signalling molecules derived from fatty acids

 oxylipins (eicosanoids/docosanoids) after liberation of FA from PL molecule and consequent metabolization

FA as source of energy

- **1.** Liberation of FA from storage molecule = TAG
 - called fat mobilization
 - enzymatically by lipases

2. Transport FA into the cytoplasma of target cell

- FA are released into the circulation (albumin bound NEFA)
- transport through the cell membrane

3. FA oxidation to acetyl CoA

a) activation of FA into acylCoA

b) degradation of FA chain by β - (α -, ω -) oxidation

FA as source of energy

- 1. Liberation of FA from storage molecule = TAG
 - a) higher energy demand
 - TAG is the richest source of E (up to 38 kJ/g)
 - carbon atoms in highly reduced state
 - no H₂O needed for storage (x glycogen)
 - during prandial phase
 - long term demand = fasting/starvation
 - actual consumption of energy = physical exercise

b) part of stress response

- covers high energy demand + formation of signalling molecules

FA as source of energy

1. Liberation of FA from storage molecule = TAG

TAG are stored as lipid droplets (adipocytes....)

FA as source of energy

- **1.** Liberation of FA from storage molecule = TAG
 - 3 FA are consequently cleaved from TAG molecule

FA as source of energy

1. Liberation of FA from storage molecule = TAG hormonal control of the process

FA as source of energy

1. Liberation of FA from storage molecule = TAG hormonal control of the process

FA as source of energy
2. Transport of FA to the target cell extracellular – the circulation NEFA are bound to <u>albumin</u> adipose tissue → blood → skeletal muscles, heart, liver

passing through plasma membrane of target cell passive diffusion facilitated diffusion – transporting molecules (FATP, CD36)

intracellular – cytoplasmatic binding proteins (FABPs)

FA are activated in various cell compartments:

- VLCFA in peroxisome membranes
- LCFA in outer mitochondrial membranes/ ER
- MCFA, SCFA in mitochondrial matrix

FA as source of energy

3. FA oxidation to acetyl CoA

b) degradation of FA CoA chain by β - (α -, ω -) oxidation see lecture on FA biosynthesis and degradation

compartmentalization

Occurence

- in all nucleated cells (x not in mature ery)

Phosphatidate biosynthesis

1. Synthesis of PA

- analogous to TAG biosynthesis (G3P \rightarrow LPA \rightarrow PA)

2. Modification of PA with hydrophilic part

- further activation needed:
- a) PC, PE: activated alcohol part

b) PI, DPG, PG: activated DAG part

activated intermediates

Cytidine nucleotides

a) for PE, PC synthesis:

b) for PG, DPG, PI synthesis:

1,2-diacyl-3-(2´-cytidyl)diphosphate-*sn*-glycerol CDP-DAG

a) PE and PC biosynthesis

activation of bases

 dietary sources or membrane PL ethanolamine

a) PE and PC biosynthesis

Synthesis of DAG

- by hydrolysis of PA

a) PE and PC biosynthesis

Conjugation of activated bases with DAG

a) PE and PC biosynthesis

Alternative PC biosynthetic pathway

- during starvation/low choline in diet
- transfer of three methyl groups (donor: SAdeMet)
- in liver

PS biosynthesis

Exchange reaction

- reversibly from PE or PC
- in endoplasmic reticulum

b) PI, PG and DPG biosynthesis

Activated DAG needed

- rapid turnover

b) PI, PG and DPG biosynthesis

PI biosynthesis

b) PI, PG and DPG biosynthesis

PG and DPG (CL) biosynthesis

- DPG is synthesised only in mitochondrion

phospholipases

Site specific cleavage of PL

- for glycerophospholipids:

PC

phospholipases

Phosholipases A₁ (PLA₁)

- es A₁ (PLA₁)
- wide tissue distribution
- physiological functions largely unknown
- some of them are PS, PA specific

phospholipases

Phosholipases A₂ (PLA₂)

- wide tissue distribution including pancreatic juice
- liberates PUFA from *sn*-2 position of PL

important part of eicosanoid biosynthesis

- part of defense against bacteria, viruses (attack of membranes)
- can hydrolyze oxidized PUFAs in PL
- inhibited by glucocorticoids
- PLA₂ in snake venom generated lysoPL are effective detergents

erythrocyte lysis

phospholipases

Phosholipases C (PLC)

- wide tissue distribution
- production of second messengers (e.g. PI-4,5PP \rightarrow DAG + IP₃)
 - high number of PI specific isozymes

divided into classes β , δ , ϵ , γ , η , ζ

activated by hormones

phospholipases

Phosholipases D (PLD)

- wide tissue distribution
- physiological functions largely unknown (PA + base)
- need phosphoinositides as a cofactor for activity

overview

1. Synthesis of sphinganine

- from serine and palmitoylCoA

2. Acylation

- forming of amide bond (\rightarrow ceramides)

3. Addition of hydrophilic moiety

- various groups (\rightarrow various sphingolipid classes)

sphinganine biosynthesis

Condenzation of palmitoyl CoA and serine

- NADPH + H⁺ needed

ceramide biosynthesis

Acyl transfer to sphinganine backbone

- de novo or products of sphingolipid catabolism

further metabolization of ceramides

Hydrophilic part addition 1. + phosphocholine → sphingomyelines

2. + saccharide moiety
+ UDP-activated saccharide units → glycosphingolipids
- monosaccharide → cerebrosides
- di-, tri- saccharide → oligoglycosylceramides
further modification with CMP-activated
sialic acids → gangliosides

overview_

DEGRADATION OF SPHINGOLIPIDS

Hydrolytic degradation

- lysosomal hydrolases with saposins (special coactivators)
 → sialic acids + sugars + long-chain bases + fatty acids

deficit in enzymes → accumulation of intermediates → metabolic diseases (lysosomal sphingolipidoses)

- neurological symptoms
- enlargement of liver

DEGRADATION OF SPHINGOLIPIDS

Hydrolytic degradation

- lysosomal hydrolases with saposins (special coactivators)

Further reading

Textbooks, monographs

Biochemistry of Lipids, Lipoproteins and Membranes (5th Ed); Vance DE, Vance Je (Eds.), Elsevier, Amsterodam (The Netherlands) 2008

Lehninger Principles of Biochemistry (6th Ed); Nelson DL, Cox MM (Eds.), Susan Winslow, New York (U.S.A.) 2013 Harper's Illustrated Biochemistry (28th Ed); Murray RK, Bender DA, Botham KM, Kennely PJ, Rodwell VW, Weil PA (Eds.), McGraw-Hill, New York (U.S.A.) 2009

Articles

Vance JE, Vance DE: Phospholipid biosynthesis in mammalian cells. *Biochem Cell Biol* 2004; 82: 113-128.

Athenstaedt K, Daum G: The life cycle of neutral lipids: synthesis, storage and degradation . *Cell Mol Life Sci* 2006; **63**: 1355–1369.

Forest C, Tordjman J, Glorian M, Duplus E, Chauvet G, Quette J, Beale EG, Antoine B: Fatty acid recycling in adipocytes: a role for glyceroneogenesis and phosphoenolpyruvate carboxykinase. *Biochem Soc Trans* 2003; 31: 1125-1129

Prentki M, Madiraju SRM: Glycerolipid Metabolism and Signaling in Health and Disease. Endo Rev 2008; 29: 647–676. Hannun YA, Obeid LM: Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 2008; 9: 139-150.

Kolter T, Sandhoff K: Sphingolipid metabolism diseases. Bioch Biophys Acta 2006; 758: 2057–2079.

Web sources

http://www.cyberlipid.org http://lipidlibrary.aocs.org http://www.lipidmaps.org http://www.chem.qmul.ac.uk/iupac - IUPAC Nomenclature page http://themedicalbiochemistrypage.org - the Medical Biochemistry Page