
LIPIDS Introduction - complex lipids

Marek Vecka

CLASSIFICATION OF LIPIDS IV

- biosynthetic route

CLASSIFICATION OF LIPIDS

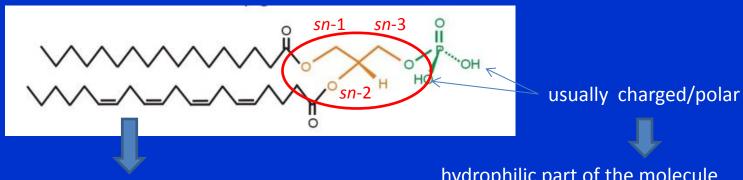
Lipid class	Abbreviation	
Fatty acyls	FA	
Glycerolipids	GL	
Glycerophospholipids	GP	
Sphingolipids	SP	
Sterol lipids	ST	
Prenol lipids	PL	
Other – saccharolipids, polyketides	SL, PK	

esters of glycerol with fatty acids; 3C of glycerol – bound (P)

Glycerophospholipids = esters of glycerol with FA + 3rdC of glycerol has bound phosphoric acid residue

Phosphoric acid residue often esterified with groups with -OH

1. Amphipathic

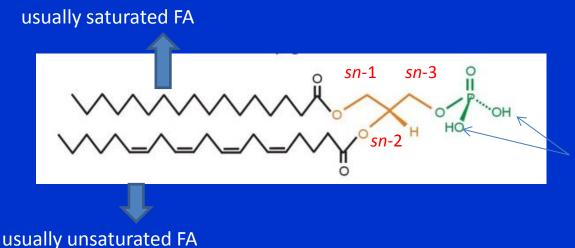

2. Complex = FA, glycerol, group with -OH

esters of glycerol with fatty acids; 3C of glycerol – bound (P)

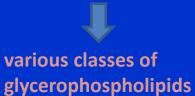
Glycerophospholipids are derived from Phosphatidic acid

- FAs on *sn*-1,2 positions of glycerol backbone
- on sn-3 position is phosphoric acid

hydrophobic part of the molecule

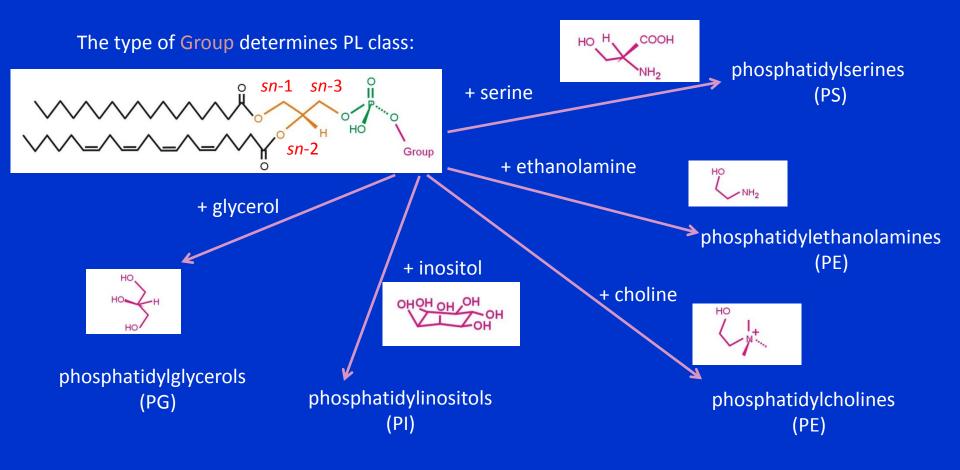

hydrophilic part of the molecule

esters of glycerol with fatty acids; 3C of glycerol – bound (P)

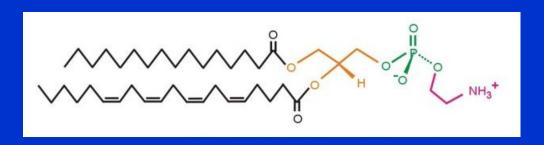


Phosphatidic acid

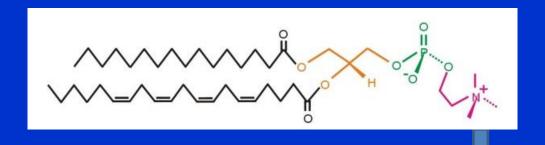
- FAs on sn-1,2 positions of glycerol backbone
- on *sn*-3 position is phosphoric acid



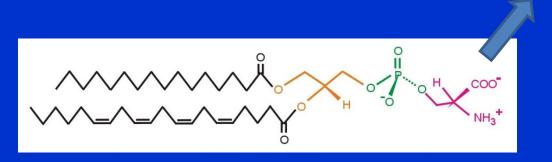
can be esterified with group cont. –OH group



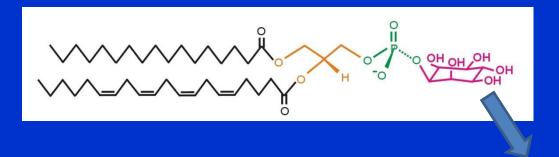
esters of glycerol with fatty acids; 3C of glycerol – bound (P)

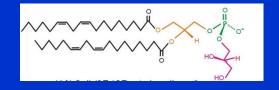


phosphatidylethanolamines and phosphatidylcholines



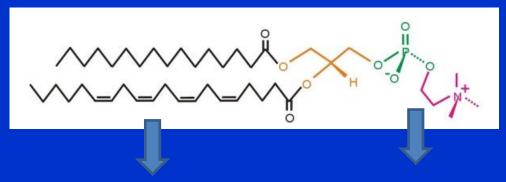
phosphatidylethanolamines (PE)


phosphatidylcholines (PC)



acidic group

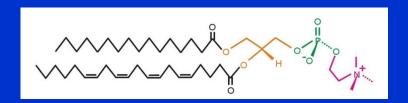
phosphatidylserines (PS)


phosphatidylinositols (PI)

polarity group

phosphatidylglycerols (PG)

properties of GP



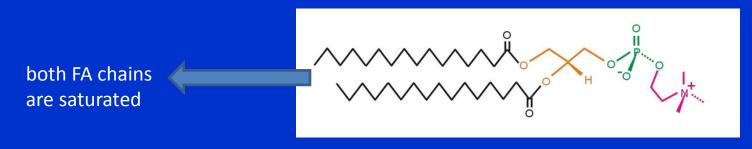
hydrophobic part of the molecule

hydrophilic part of the molecule

- amphipathic → used in membranes, as emulgators/tensids (↓surface tension)
- their components can take part in signalling cascades

phosphatidylcholines

Occurence


- mainly in the outer leaflet of cell membranes
- in bile (emulgator), lipoproteins (stabilization of the structure)

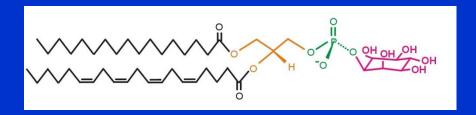
choline can be used for acetylcholine synthesis PC in signalization cascades

phosphatidylcholines of pulmonary surfactant

dipalmitoyIPC

- important part of pulmonary surfactant

- the surfactant prevents the alveoli from collapsing (lowers surface tension)


lysophosphatidylcholines

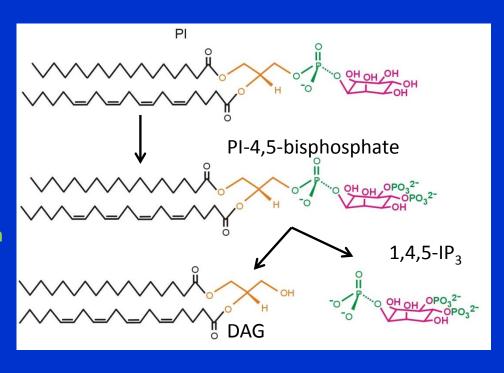
Occurence

- products of hydrolysis of PC on sn-2 position (by LCAT, PLA₂)
- in snake venom

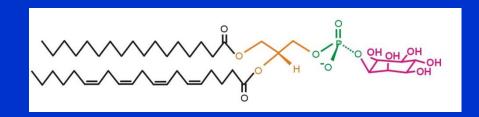
LPC also takes part in signalization cascades

phosphatidylinositols

Occurence


- mainly in the inner leaflet of cell membranes

I. PI in signalization cascades


- a) PI is doubly phosphorylated to form PI-4,5-bisphosphate
- b) PI-4,5-bisphosphate is then hydrolyzed by phospholipase C

to second messengers:

- 1. DAG
 - via PKC stimulates protein phosphorylation
- 2. inositol-1,4,5-trisphosphate releases Ca²⁺ from intracelullar depots

phosphatidylinositols

Occurence

- mainly in the inner leaflet of cell membranes

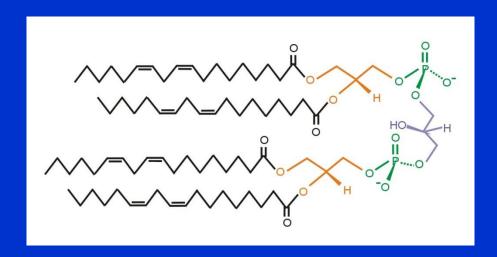
II. Pl anchor

GPI-anchored proteins – on outer face;

bonded via short oligosaccharide to

glycophosphatidylinositol (GPI)

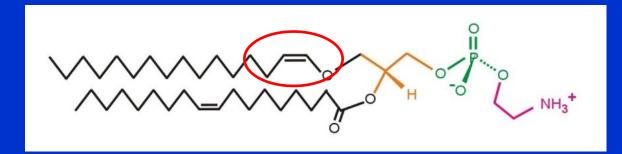
various receptors


enzymes adhesive proteins

Diphosphatidylglycerols (cardiolipins)

Occurence

- mainly in the inner leaflet of mitochondrias


Functions

- in mitochondria, it can take part in H⁺ transfer
- diagnostics of syphilis (in *Treponema pallidum* membranes)

Antiphospholipid syndrome

 Ab against DPG produced → recurrent thrombosis, recurrent abortions

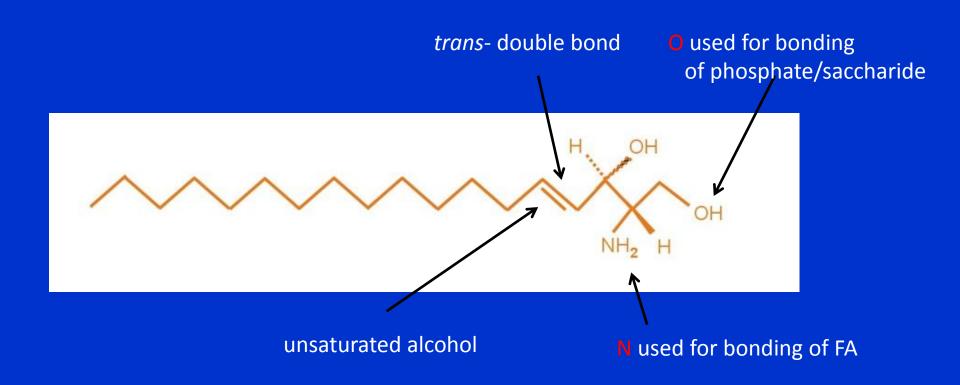
plasmalogens

Occurence

- mainly in brain and heart
- up 10% of membrane PL

Platelet activating factor - PAI

- = 1-alkyl-2-acetylphosphocholine
- activates polymorphonuclear leukocytes and thrombocytes

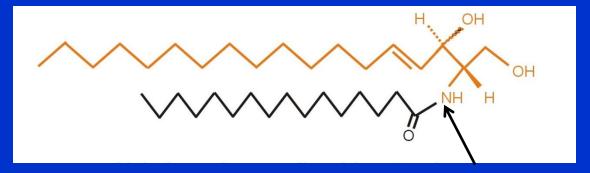

CLASSIFICATION OF LIPIDS

Lipid class	Abbreviation		
Fatty acyls	FA		
Glycerolipids	GL		
Glycerophospholip	GP		
Sphingolipids	NH H HO L	SP	
Sterol lipids	ST		
Prenol lipids	PL		
Other – saccharolipids, polyketides		SL, PK	

lipids with sphingosine backbone

sphingosine

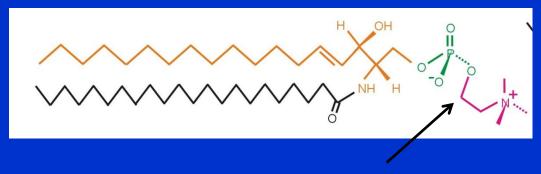
- (E)-2-aminooctadec-4-en-1,3-diol


ceramides

sphingosine

- N-acylsphingosines (sphingenine + FA)
- intermediates in biosynthesis of sphingolipids

biological function


- 1. apoptosis (oxidative stress transducers)
- 2. stratum corneum in skin: prevent water losses and toxic compounds permeation

N used for bonding of FAs – VLCFA, hydroxyFA

sphingomyelines

- N-(1-acyl)-sphing-4-enine-1-phosphocholines (ceramide + phosphoric acid + choline)
- intermediates in biosynthesis of sphingolipids biological function
- 1. signalling cascades
- 2. components of plasma membranes: myeline sheaths

phosphoric acid and choline

glycosphingolipids

- ceramide + saccharide part (no phosphoric acid)
- many types according to the saccharide:

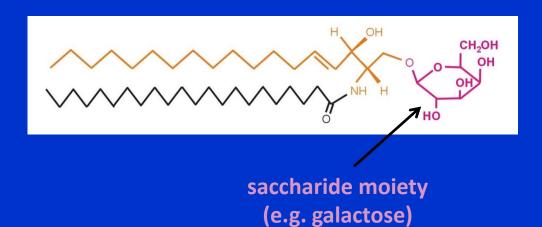

monosaccharide: glucose, galactose

oligosaccharides: lactose,

N-acetylated hexosamines

N-acetylneuraminic acid

galacto cerebrosides



glycosphingolipids

Cerebrosides

- monosaccharide ceramides
- O-glycosidic bond
- mainly in brain (galactocerebrosides)

galactocerebrosides

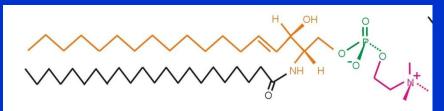
glycosphingolipids

sulfatides

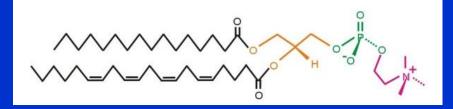
- monosaccharide ceramides with sulfogroup (on C3 of the saccharide)
- O-glycosidic bond as in the cerebrosides

saccharide moiety (e.g. galactose)

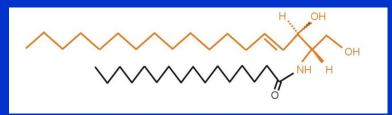
sulphated saccharide


glycosphingolipids

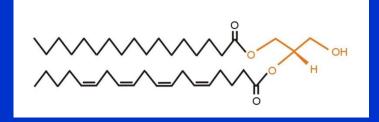
gangliosides


- contain apart from saccharides also the derivatives of sialic acid
 (N-acetylneuraminic acid)
- neuronal tissue rich in gangliosides, content is tissue specific
- responsible for blood group specificity in erythrocytes
- many antigenic determinants sialic acid

similarity to glycophospholipids


sphingomyelines

vs. phosphatidylcholines



ceramides

VS.

diacylglycerols

Further reading

Textbooks, monographs

Biochemistry of Lipids, Lipoproteins and Membranes (5th Ed); Vance DE, Vance Je (Eds.), Elsevier, Amsterodam (The Netherlands) 2008

Lehninger Principles of Biochemistry (6th Ed); Nelson DL, Cox MM (Eds.), Susan Winslow, New York (U.S.A.) 2013 Harper's Illustrated Biochemistry (28th Ed); Murray RK, Bender DA, Botham KM, Kennely PJ, Rodwell VW, Weil PA (Eds.), McGraw-Hill, New York (U.S.A.) 2009

Articles

Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill Jr. AH, Murphy RC, Raetz CRH, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, Van Nieuwenhze MS, White SH, Witztum JL, Dennis EA: A comprehensive classification system for lipids. *J Lipid Res* 2005; **46**: 839–861.

Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CHR, Shimizu T,Spener F, van Meer G, Wakelam MJO, Dennis EA: Update of the LIPID MAPS comprehensive classification system for lipids. *J Lipid Res* 2009; **50**: S9–S14.

Web sources

http://www.cyberlipid.org

http://lipidlibrary.aocs.org

http://www.lipidmaps.org

http://www.chem.qmul.ac.uk/iupac - IUPAC Nomenclature page

http://themedicalbiochemistrypage.org - the Medical Biochemistry Page