LIPIDS Introduction - simple lipids

Marek Vecka

LIPIDS

DEFINITION OF LIPIDS

(no precise definition exists...)

I. Based on physicochemical properties The term "lipid" defines substances as oils, fats and waxes which can be only characterized by a large array of properties:

insoluble or immiscible with water but soluble in organic solvents such as chloroform, ether, benzene, acetone,...

(i.e. hydrophobic/amphipatic structures)

coming from animals and plants living or fossilized, but they can also be produced by chemical synthesis

LIPIDS

DEFINITION OF LIPIDS

(no precise definition exists...)

II. Based on molecular structure

- formed of long-chain hydrocarbon groups (carbon and hydrogen) but may also contain oxygen, phosphorus, nitrogen and sulfur.

Lipids are fatty acids and their derivatives, and substances related biosynthetically or functionally to these compounds.

cerebroside

oil (= liquid fat)

wax

sphingomyeline

lecithin

?? CHOLESTEROL ??

LIPIDS

DEFINITION OF LIPIDS

(no precise definition exists...)

II. Based on molecular structure

- formed of long-chain hydrocarbon groups (carbon and hydrogen) but may also contain oxygen, phosphorus, nitrogen and sulfur.

Lipids are fatty acids and their derivatives, and substances related biosynthetically or functionally to these compounds.

Lipids are hydrophobic or amphipathic small molecules that may originate entirely or in part by carbanion-based condensations of thioesters (fatty acids, polyketides, etc.) and/or by carbocation-based condensations of isoprene units (prenols, sterols, etc.).

cholesterol

squalene

vitamin D₃

bile acid

CLASSIFICATION OF LIPIDS I

- molecular structure

Lipid class			Abbreviation	N of known structures
Fatty acyls		но он	FA	5869
Glycerolipids		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	GL	7541
Glycerophospholip	oids	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	GP	8002
Sphingolipids	~~~~		SP	4338
Sterol lipids	HO		ST	2715
Prenol lipids	600		PL	1259
Other – saccharolipids, polyketio	des		SL, PK	1293+6742

CLASSIFICATION OF LIPIDS II - susceptibility to hydrolysis

Nonhydrolyzable lipids – group not reacting with H_2O :

fatty acids	eicosanoids (oxylipins)
sterols	vitamins (<i>fat soluble</i>)

Hydrolyzable lipids – group reacting with H_2O :

glycerophospholipids glycerosphingolipids

triacylglycerols diacylglycerols monoacylglycerols

CLASSIFICATION OF LIPIDS III - yield of hydrolysis

Simple lipids – <u>at most 2 types</u> of products:

fatty acids	triacylglycerols		
waxes	diacylglycerols		
sterols	monoacylglycerols		

Complex lipids – <u>at least 3 types</u> of products:

glycerophospholipids glycerosphingolipids

CLASSIFICATION OF LIPIDS IV

- biosynthetic route

CLASSIFICATION OF LIPIDS V - polarity

neutral lipids – no polar group

hydrocarbons/prenols/waxes

steryl esters

triacylglycerols

sterols

diacylglycerols/monoacylglycerols

free fatty acids glycerophospholipids glycerosphingolipids

polar lipids – polar group within molecule

FUNCTION OF LIPIDS

I. Energy storage and utilization

Triacylglycerols (TAG) 1 g TAG ~ 38 kJ (best E source, very long chain fatty acids) nonpolar lipid = lipid droplets in adipocytes etc.

II. Specialized lipid microenvironment bile acids – ingestion of lipids lipoproteins – transport of lipids/lipid soluble vitamins

FUNCTION OF LIPIDS

III. Insulation

Thermal insulation TAGs in subcutaneous fat (loss of heat) TAGs in visceral fat (thermal stability) Mechanical/electrical insulation sphingomyelins, cholesteryl esters, TAG (myeline sheaths) layers preventing from impact shock (sole) Water loss prevention ceramides in skin, TAG/cholesteryl esters in sweat Pulmonary surfactant - air-liquid tension reduction **IV. Intrinsic part of membranes** compartment "insulation"

FUNCTION OF LIPIDS

V. Metabolites of lipids Signalling molecules eicosanoids oxysterols fatty acid amides Ligands for nuclear receptors oxysterols/oxylipins - PPARs, LXR, FXR

VI. Modification of proteins, saccharides anchoring in membranes antigenic determinants

CLASSIFICATION OF LIPIDS

Lipid class	Abbreviation
Fatty acyls	FA
Glycerolipids	GL
Glycerophospholipids	GP
Sphingolipids	SP
Sterol lipids	ST
Prenol lipids	PL
Other – saccharolipids, polyketides	SL, PK

FATTY ACYLS

(Free) fatty acids

Waxes

Eicosanoids/Docosanoids

Fatty acid amides

Hydrocarbons

Hydrophobic
 Simple = part of complex lipids, ubiquitous

FATTY ACIDS (FA)

- carboxylic acids (organic acids)
- hydrocarbon chain + carboxyl group

- many types of FA in nature
 - human plasma more than/60 different FAs
 - usually bound in lipids as esters
 - most have even carbon number (biosynthesis from 2C units)

FATTY ACIDS (FA)

have variable chain length: short chain fatty acids (SCFA) FA with < 6C</pre>

medium chain fatty acids (MCFA) FA with 6-12C

long chain fatty acids (LCFA) FA with 13-20C

very long chain fatty acids (VLCFA)
FA with > 21C

FATTY ACIDS (FA)

<u>can</u> have various chain modifications: <u>double (triple) bonds</u> one C=C, more C=C, (C=C rarely) = unsaturated FA

<u>side methyl groups</u> iso-, anteiso- branched FA = **branched FA**

<u>hydroxy groups</u> hydroxy FA = *hydroxy FA*

other modifications oxy-, thia-, cyclo-, dicarboxylic- ...

FATTY ACIDS

structure of fatty acids: <u>simple structural formula</u>

reduced structural representation

real position of atoms

FATTY ACIDS shorthand notation for fatty acids C:N-x or C:N₀₀x notation is the most common docosahexaenoic acid (22:6n-3), DHA $\Lambda^{4,7,10,13,16,19}$ docosahexaenoic acid 6 double bonds 22 C in total 22:6n-3 or 22:603 119 Δ16 $\Lambda 13$ $\Delta 10$ $\Delta 4$ $\Lambda 7$ C22 **C1**

C:N-x notation

C ... number of carbon atoms in the molecule N ... number of double bonds in the molecule x ... position of the first double bond from the methyl end

C:N ox notation

 $\boldsymbol{\omega}$... the same as x above

NOTE: ASSUMES THAT ALL DOUBLE BONDS ARE IN PENTADIENIC CONFIGURATION!

FATTY ACIDS shorthand notation for fatty acids

IUPAC notation also used

C ... number of carbon atoms in the molecule N ... number of double bonds in the molecule x,y,z ... positions of the double bond(s) from the carboxyl end

C:N (x,y,z) notation

x,y,z ... the same as above

NOTE: NO ASSUMPTION FOR MUTUAL DOUBLE BOND CONFIGURATION!

SATURATED FATTY ACIDS (SFA)

- straight chain or branched
- even or odd number of C
- SCFA, MCFA, LCFA, VLCFA

- Short chain fatty acids (SCFA) acetic acid (2:0) propionic acid (3:0) butyric acid (4:0)
- in humans formed in proximal colon during fibre fermentation
- quickly absorbed, used in liver for synthesis (Glc, FA) (~10% REE)
- used in metabolism, proliferation and restoration (cell replication) of colonocytes
- cause limited reproduction of saprophytic bacteria due to decreased acidity

Medium chain fatty acids (MCFA)caproic acid (6:0)caprylic acid (8:0)pelargonic acid (9:0)

capric acid (10:0) lauric acid (12:0) undecylic acid (11:0)

- 6-10:0 characteristic odors (*caper*, goat), in milk
- not in membrane lipids
- quickly absorbed, as TAG used in enteral nutrition
- liquid

Long chain fatty acids (LCFA)

lauric acid (12:0) palmitic acid (16:0) arachidic acid (20:0) myristic acid (14:0) stearic acid (18:0)

- in animal and vegetable oils
- not readily absorbed
- atherogenic and thrombogenic effects
- solid (plastic)

Fats rich in SFA

animal sources

4:0, 6:0	butter
8:0	butter
10:0	butter
12:0	butter
14:0	butter, tallow
16:0	lard, tallow
18:0	lard
20:0	

vegetable sources

coconut oil coconut oil coconut oil coconut oil coconut oil, palm oil palm oil shea butter

Monounsaturated fatty acids (MUFA)

- only one double bond in the chain

configuration

CİS

Elaidic acid (18:1n-9E)

Polyunsaturated fatty acids (PUFA)

- two or more double bonds in the molecule
- usually in *cis,cis*-pentadienic structure
 n-3 family
 n-6 family
 CLAs

Double bond in cis configuration

- most of MUFA
- the chain is slightly bonded
- lower melting point vs. trans- isomer

- sometimes referred to as Z (cf. German zusamenn) isomer

Double bond in trans configuration

- minority of MUFA
- the chain is nearly straight
- higher melting point vs. cis- isomer

Elaidic acid (18:1n-9E)

- sometimes referred to as E (cf. German entgegen) isomer

oleic acid (OA, 18:1n-9)

- most common
- olive, rapeseed, peanut oils
- antithrombotic, antiatherogenic properties (oxidation resistant)

erucic acid (22:1n-9) - cardiotoxic, now low erucic rapeseed oils

n-9 MUFA

palmitoleic acid (16:1n-7) - in lard, other fats

vaccenic acid (18:1n-7)

n-7 MUFA

n-6 PUFA family

double bonds are on 6th C from CH₃ end

linoleic acid (LA, 18:2n-6)

- synthesized only in plants (EFA)
- in soya, corn, sunflower oils
- animals use for ARA synthesis

γ-linolenic acid (GLA, 18:3n-6)

- in borage oil
- antiinflammatory effects

n-6 PUFA family

double bonds are on 6th C from CH₃ end

arachidonic acid (ARA, 20:4n-6)

- most important FA of n-6 PUFA

- major constituents in membrane phospholipids (...meat)
- precursor for eicosanoids with inflammatory and thrombogenic effects
- important for angiogenesis (placenta)

n-3 PUFA family

double bonds are on 3^{rd} C from CH₃ end α -linolenic acid (ALA, 18:3n-3)

- in linseed oil
- synthesized only in plants (EFA)

eicosapentaenoic acid (EPA, 20:5n-3)

docosahexaenoic acid (DHA, 22:6n-3)

- marine unicellular algae ightarrow in seafish
- important for neuronal structures (pregnancy)
- precursors of eicosanoids (EPA) or docosanoids (DHA) with beneficial effects on cardiac, cognitive functions inflammation

Symptoms of PUFA deficiency

Clinical feature	PUFA n-6	PUFA n-3
liver function	steatosis	
growth/reproduction	disturbed	normal
retina/brain	normal	abnormal electro- retinogram, neurological disturbances
skin	skin lesions	normal skin
water balance	polydipsia	polydipsia

CONJUGATED LINOLEIC ACIDS

double bonds are not in pentadiene form, but are

conjugated forms of linoleic acid (CLAs)

- the double bonds are in cis, trans- or trans, cis- configuration
- the positions are 7,9 or 9,11 or 10,12

CONJUGATED LINOLEIC ACIDS

sources of CLA

- in vivo as intermediates of hydrogenation of LA in the rumen by several bacterias (*Butyrvibrio ssp.*)
- in vivo as intermediates of hydrogenation of tVA in the mammary milk gland
 - \rightarrow meat, milk of ruminants
- endogenously by thermal procession of milk/dairy products

effects of CLA

- promising data on animal models (body weight/hypertension)
- in human, the results are contradictory
- can be isomer specific?

TRANS ISOMERS OF FATTY ACIDS

at least one double bond is in trans configuration

the chain structure is nearly linear (~SFA)

TRANS ISOMERS OF FATTY ACIDS

at least one double bond is in trans configuration sources of trans fatty acids (TFA)

- *in vivo* as intermediates of hydrogenation of LA in the rumen by several bacterias (*Butyrvibrio ssp.*)
- → meat, milk, butter, cheese of ruminants (app. 2-8% trans fatty acids by weight)

by hydrogenation (oil hardening)/heating (frying) of vegetable fats (almost TFA free)

effects of trans fatty acids (TFA)

similar to SFA (risk factor for ATH: LDL-C个)

BRANCHED FATTY ACIDS

various aliphatic substituents are attached to the chain

sources of branched FA

- products of microbial metabolism (tuberculostearic acid)
- microbial degradation of substrates in ruminants, marine organisms
 - \rightarrow can be in the diet
- in animals rarely (sebum, *vernix caseosa* biofilm covering fetus)

BRANCHED FATTY ACIDS

various aliphatic substituents are attached to the chain

Phytanic acid

- product of degradation of chlorophyll
- in bovine milk lipids (~0.1%)
- must be metabolized in peroxisomes (accumulation in brain/blood)

Refsum's disease

- inherited neurological disorder
- the catabolism of phytanic acid ineffective

Chlorophyll A \downarrow degradation 2E, 3R/S, 7R, 11R-phytol \downarrow oxidation 3R/S, 7R, 11R-phytanic acid \downarrow \land \downarrow \land \downarrow \land \downarrow \downarrow

18:0 3,7,11,15m

- the sources of phytanic acid must be avoided

HYDROXY FATTY ACIDS

hydroxy substituents are attached to the chain

Glycoshingolipid biosynthesis

- mainly cerebronic and hydroxynervonic acids
- in neuronal tissues, other role in reproduction

ricinoleic acid – castor oil (purgative, defoamer...)

Oxylipins

- OH FA derived from LA, ALA, EPA, DHA ...
- precursors for octadecanoids/eicosanoids/ /docosanoids (see lecture on eicosanoids)

Ricinoleic acid (18:1n-9 12OH)

FATTY ACID AMIDES

amino group derivative - carboxyl of FA changed

FA amides

- not in vegetable oils/fats
- in neuronal tissues, blood
- ligands for cannabinoid receptors

Anandamide

- N-arachidonoylethanolamide

Oleamide

- sleep inductor in mammals
 Erucamide
 - angiogenic factor in the mesentery

WAXES

esters of long-chain fatty alcohols with long-chain fatty acids

Sources of waxes

- commercial: beeswax, lanoline, jojoba
- plant surface: leafs, fruits
- skin: sebaceous glands
- sperm whale oil (76% waxes)

CLASSIFICATION OF LIPIDS

Lipid class		Abbreviation
Fatty acyls		FA
Glycerolipids		GL
Glycerophospholipids		GP
Sphingolipids		SP
Sterol lipids		ST
Prenol lipids		PL
Other – saccharolipids, polyketides		SL, PK

GLYCEROLIPIDS

esters of glycerol with fatty acids

triacylglycerols (TAG)

- very hydrophobic
- used as E source/depo oils/fats

diacylglycerols (DAG)

- rare in oils/fats
- intermediates in TAG biosynthesis
- signalling function

monoacylglycerols (MAG)

- end products of TAG digestion
- 2ARA glycerol (resembles anandamide)

1-hexadecanoyl-2-(5Z,8Z,11Z,14Z-icosatetraenoyl)--3-(9Z,12Z-octadecadienoyl)-sn-glycerol (triacylglycerol) TAG

1-hexadecanoyl-2-(*5Z*,*8Z*,*11Z*,*14Z*-icosatetraenoyl)-*sn*-glycerol (diacylglycerol) DAG

1-hexadecanoyl-*sn*-glycerol (monoacylglycerol) MAG

GLYCEROLIPIDS

esters of glycerol with fatty acids

triacylglycerols (TAG)

- sn nomenclature
- no charge \rightarrow neutral

diacylglycerols (DAG)

- possible isomers: *sn*-1,2-DAG, *sn*-2,3-DAG, *sn*-1,3-DAG

monoacylglycerols (MAG)

 3 possible isomers: *sn*-1-MAG, *sn*-2-MAG, *sn*-3-MAG

sn-2-monoacylglycerol

sn-3-monoacylglycerol

sn-1-monoacylglycerol

Analysis of lipids

LIPIDOME

- = all lipids in the organism
- some organisms have only limited number of lipidic molecules
- humans: human plasma lipidome > 1000 different lipidic molecules

Lipidomics: area of bioanalytical CH describing the lipidomes (structure, function, content, compartmentalization ...)

Further reading

Textbooks, monographs

Biochemistry of Lipids, Lipoproteins and Membranes (5th Ed); Vance DE, Vance Je (Eds.), Elsevier, Amsterodam (The Netherlands) 2008

Lehninger Principles of Biochemistry (6th Ed); Nelson DL, Cox MM (Eds.), Susan Winslow, New York (U.S.A.) 2013 Harper's Illustrated Biochemistry (28th Ed); Murray RK, Bender DA, Botham KM, Kennely PJ, Rodwell VW, Weil PA (Eds.), McGraw-Hill, New York (U.S.A.) 2009

Articles

Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill Jr. AH, Murphy RC, Raetz CRH, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, Van Nieuwenhze MS, White SH, Witztum JL, Dennis EA: A comprehensive classification system for lipids. *J Lipid Res* 2005; **46**: 839–861. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CHR, Shimizu T, Spener F, van Meer G, Wakelam MJO, Dennis

Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CHR, Shimizu T,Spener F, van Meer G, Wakelam MJO, Dennis EA: Update of the LIPID MAPS comprehensive classification system for lipids. *J Lipid Res* 2009; **50**: S9–S14.

Ratnayake WMN, Galli C: Fat and Fatty Acid Terminology, Methods of Analysis and Fat Digestion and Metabolism: A Background Review Paper. *Ann Nutr Metab* 2009; **55**: 8–43.

Das UN: Essential Fatty Acids - A Review. Curr Pharm Biotechnol 2006; 7: 467-482.

Web sources http://www.cyberlipid.org

http://lipidlibrary.aocs.org

http://www.lipidmaps.org