Naming inorganic compounds

MUDr. Jan Pláteník, PhD

Atom

- Smallest particle of a pure element having its chemical properties
- Positively charged nucleus (protons, neutrons)
- Negatively charged electron shell:
 - Electron is wave/particle
 - Behavior of electron described by quantum mechanics
 (... wave function, quantum numbers)
 - Orbital: space area within the atom shell where occurrence of an electron or pair of electrons is more probable
- Structure of electron shell determines chemical properties
 - Valence electrons
 - The octet rule

Molecular (covalent) compounds

- Consist of particles (molecules) made of several atoms connected with **covalent bonds**
- Examples of molecules:
 - Gases: diatomic HHH HN H
 - Covalently-bonded crystals: diamond
 - Macromolecules of proteins and nucleic acids

Covalent chemical bond

- Most often between two non-metals
- Chemical bond that results from two nuclei attracting the same pair(s) of electrons
- Based on electron sharing

- If more pairs shared ... double or triple bonds
- Some atoms may also have nonbonding (lone) electron pairs

Valence

- Number of covalent bonds formed by an atom
- The octet rule: tendency to achieve electron configuration of the nearest noble gas
 - e.g. H-F: H achieves configuration of He, F configuration of Ne
- Therefore O usually bivalent, N trivalent, C tetravalent etc.

Coordination covalent bond

- (also dative, donor-acceptor bond)
- Both bonding electrons provided by one of the atoms (donor), whereas the other atoms provides an empty orbital (akceptor)

Ionic compounds

- Consist of charged particles (ions) held together by <u>ionic bonds</u>
- Metal + non-metal(s)
- Cations (+) and anions (-) combine in space to achieve electroneutrality

Ions

- Charged because number of electrons does not match number of protons
- Tendency to form ions depends on **electronegativity** of element
- Monoatomic: Na⁺, Cl⁻, H⁺, Fe²⁺
- Polyatomic: NO₃⁻, SO₄²-
- Complex: [Fe(CN)₆]⁴⁻

Polyatomic ions of oxo-acids:

e.g. sulfate, SO_4^{2-} :

resonance stabilization of sulfate ion

..similar is nitrate NO_3^- , phosphate PO_4^{3-} , carbonate CO_3^{2-} , etc.

Coordination (complex) ions

- central atom of transition metal providing empty orbitals
- ligands providing free electron pairs
- Number of ligands (coordination number) is usually 4 or 6

Ionic salts: no true molecule

• Crystal lattice of NaCl:

Formula unit

• Dissolution of NaCl in water: electrolytic dissociation producing hydrated independent ions Na+, Cl-

Chemical formulas

• Stoichiometric (empirical):

– e.g.: glucose CH₂O; sodium chloride NaCl

• Molecular:

-e.g.: glucose $C_6H_{12}O_6$; sodium chloride NaCl

• Structural:

Polarity of chemical bond

Determined by difference in electronegativity of the two connected atoms:

< 0.4 nonpolar covalent bond

e.g. H-H, carbon-hydrogen

0.4 - 1.7 polar covalent bond

e.g. H-O-H, NH₃, carbon-oxygen, carbon-nitrogen

>1.7 ionic bond

e.g NaCl...

Gradual transition!

Oxidation number (formal valency)

- Oxidation number of element in compound equals its charge after giving all bonding electron pairs to the more electronegative atom
- Can be zero, positive or negative integer
- Basis for nomenclature of inorganic compounds
- Redox reactions: oxidation number increases in oxidation, decreases in reduction

Rules for determination of oxidation numbers

- Free electroneutral atom, or atom in molecule of pure element: oxidation number = 0
- Oxidation number of a monoatomic ion equals its charge
- In heteroatomic compounds the bonding electrons are given to the more electronegative atom, practically:
 - H has nearly always oxidation number I (only in metallic hydrides -I)
 - O almost always -II (only in peroxides -I)
 - F always -I
 - Alkali metals (Na, K..) always I
 - Alkaline earth elements (Ca, Mg..) always II

Rules for determination of oxidation numbers

Examples:

 $CO_2: C^{IV}, O^{-II}$

H₂SO₄: H^I, S^{VI}, O^{-II}

Sum of oxidation numbers of all atoms in electroneutral molecule is 0, in polyatomic ion equals the ion charge

e.g:
$$CO_3^{2-}$$
: C^{IV} , O^{-II} $1 \times IV + 3 \times (-II) = -2$

Czech nomenclature of oxides:

Oxidation number	Suffix	General formula
I	-ný	X ₂ O
II	-natý	XO
III	-itý	X_2O_3
IV	-ičitý	XO_2
V	-ečný/-ičný	X_2O_5
VI	-ový	XO_3
VII	-istý	X_2O_7
VIII	-ičelý	XO_4

Naming Binary Ionic Compounds

- Compounds of one metallic element and one nonmetal (e.g. metallic oxides, hydroxides, halogenides, sulfides)
- Name of metal + stem of nonmetal + -ide
- Examples:
 - Al₂O₃, aluminum oxide
 - Ba(OH)₂, barium hydroxide
 - KCl, potassium chloride
 - ZnS, zinc sulfide

Naming Binary Ionic Compounds

- Numerical prefixes are never used.
- If the metal can exist in more oxidation states, its oxidation number is included to the name
- Examples:
 - FeCl₃, iron(III) chloride (ferric chloride)
 - FeCl₂, iron(II) chloride (ferrous chloride)
 - CuO, copper(II) oxide (cupric oxide)
 - Cu₂O, copper(I) oxide (cuprous oxide)

Naming Binary Molecular Compounds

- Compounds of two nonmetals (e.g. oxides of nonmetals)
- Name of less electronegative element + stem of the other element + -ide
- Numerical prefixes precede names of both nonmetals
- Examples:
 - CO, carbon monoxide
 - $-N_2O_5$, dinitrogen pentoxide
 - CCl₄, carbon tetrachloride
 - H₂S, hydrogen sulfide

Numerical prefixes:

Number	Prefix
1	mono-
2	di-
3	tri-
4	tetra-
5	penta-
6	hexa-
7	hepta-
8	octa-
8	nona-
10	deca-

Naming acids and their salts

Brønsted-Lowry concept of acids and bases:

- Acid is a proton donor
- Base is a proton acceptor

Salt: ionic compound, product of neutralization reaction between acid and base (the acidic proton replaced with metal cation)

Naming acids and their salts

A) hydroacids:

Gaseous nonmetallic hydrides whose aqueous solutions are acidic

E.g. HCl, hydrochloric acid (aqueous hydrogen chloride), salts: chloride

Likewise:

- HBr, hydrobromic acid, salts bromides
- H₂S, hydrosulfuric acid, salts sulfides
- HCN, hydrocyanic acid, salts cyanides

Naming acids and their salts

B) oxo-acids:

Central atom + -OH groups, protons dissociate from oxygen. In salts appear as polyatomic anions

If only one oxidation state of the central atom is possible:

Stem of the central atom + -ic acid

E.g. H₂CO₃, carbonic acid, salt: carbonate

Naming acids and their salts

B) oxo-acids:

If there are two possible oxidation states of the central atom:

Higher ox. number: -ic acid, salt: -ate

Lower ox. number: -ous acid, salt: -ite

Example:

H₂SO₄, sulfuric acid, salt: sulfate

H₂SO₃, sulfurous acid, salt: sulfite

Naming acids and their salts

B) oxo-acids:

If there are more than two possible oxidation states of the central atom, prefixes are used:

HClO, hypochlorous acid, salt: hypochlorite

HClO₂, chlorous acid, salt: chlorite

HClO₃, chloric acid, salt: chlorate

HClO₄, perchloric acid, salt: perchlorate

The oxidation numbers can also be used with metals in anions:

MnO₄²: manganate(VI) or just manganate MnO₄²: manganate(VII) or permanganate

[Fe(CN)₆]⁴⁻: hexacyanoferrate(II) or ferrocyanide

 $[Fe(CN)_6]^{3-}$: hexacyanoferrate(III) or ferricyanide

Naming coordination compounds

- Names of neutral ligands:
 - H_2O aqua
 - NH₃ ammin
 - NO nitrosyl
 - CO carbonyl
- Names of anionic ligands always end in -o:
 - F- fluoro
 - Cl- chloro
 - Br- bromo
 - I⁻ iodo
 - OH- hydroxo
 - CN- cyano
 - etc..

Naming coordination compounds

1. Complex particle is cation:

2. Complex particle is anion:

Naming coordination compounds

3. Both cation and anion are complexes:

4. Neutral complexes: