Osmotic pressure and osmolarity

MUDr. Jan Pláteník, PhD

Osmolarity

Sum of all osmotically active particles (OAP) in a solution
One of the colligative properties: only number of particles counts, not their kind!
Units: moles of osmotically active particles (osm) per liter
Example:
$\mathrm{NaCl} 0.15 \mathrm{~mol} / \mathrm{l}$, in solutions exists as ions $\mathrm{Na}^{+}, \mathrm{Cl}^{-}$... 2 OAP
..... Osmolarity 0.3 mol OAP/l ($0.3 \mathrm{osm} / \mathrm{l}$)

Osmotic pressure

Figure from: http://www.bbc.co.uk/dna/h2g2/A686766
П: osmotic pressure in kPa
$\Pi=\mathbf{n} . \mathrm{C} . \mathrm{R} . \mathrm{T}$ n : number of OAP per mole
C: molar concentration in $\mathrm{mol} / \mathrm{l}$
R: universal gas constant
(8.31441 N.m.mol ${ }^{-1} . \mathrm{K}^{-1}$)

T: temperature in K

Osmolarity is important in medicine

- Isotonic: osmolarity $=0.3 \mathrm{osm} / \mathrm{l}(\mathrm{NaCl} 0.15 \mathrm{~mol} / \mathrm{l})$
- Hypotonic: osmolarity < 0.3 osm/l
- Hypertonic: osmolarity $>0.3 \mathrm{osm} / \mathrm{l}$

Calculations of osmolarity/osmotic pressure
Example I: Calculate osmolarity of $\mathrm{Na}_{2} \mathbf{H P O}_{4}$ solution of $c=21 \mathrm{~g} / \mathrm{l}$.
(AW of Na: 23, P: 31, O: 16, H: 1)
FW of $\mathrm{Na}_{2} \mathrm{HPO}_{4}: 46+1+31+4 \times 16=142$
Molar concentration = Mass conc. (g/l) / FW
$=21 / 142=\underline{0.15 \mathrm{~mol} /} \mathbf{I}$
3 OAP: $2 \times \mathrm{Na}^{+}$, $1 \times \mathrm{HPO}_{4}{ }^{\mathbf{2 -}}$
Osmolarity: $0.15 \times 3=0.45 \mathrm{~mol} \mathrm{OAP} / \mathrm{l}$

Calculations of osmolarity/osmotic pressure

Example II: Calculate osmotic pressure of $\mathrm{Na}_{2} \mathbf{H P O}_{4}$ solution of $\mathbf{c}=21 \mathrm{~g} / \mathrm{l}$ at $37^{\circ} \mathrm{C}$.
(AW of Na: 23, P: 31, O: 16, H: 1; R = 8.31441 N.m.mol ${ }^{-1} \cdot K^{-1}$)
FW of $\mathrm{Na}_{2} \mathrm{HPO}_{4}: 46+1+31+4 \times 16=142$
Molar concentration = Mass conc. (g/l) / FW
$=21 / 142=\underline{0.15 \mathrm{~mol} / \mathrm{l}}$
3 OAP: $2 \mathrm{x} \mathrm{Na}^{+}$, $1 \mathrm{xHPO}_{4}{ }^{\mathbf{2 -}}$
Osmolarity: $0.15 \times 3=0.45 \mathrm{~mol}$ OAP/l
Osmotic pressure: $\quad \Pi=$ n.C.R.T

$$
\Pi=3 \times 0.15 \times 8.31441 \times(273.15+37)=\underline{1160 \mathrm{kPa}}
$$

Calculations of osmolarity/osmotic pressure

Example III: 0.2 M KCl solution is combined with an equal volume of 0.5 M glucose solution.
What is the resulting osmolarity?
After mixing:
KCl :
$\mathrm{c}=0.1 \mathrm{~mol} / \mathrm{l}, 2$ OAP: contribution to osmolarity $0.2 \mathrm{~mol} / \mathrm{l}$
Glucose:
$c=0.25 \mathrm{~mol} / \mathrm{l}, 1$ OAP: contribution to osmolarity $0.25 \mathrm{~mol} / \mathrm{l}$

Total osmolarity: $0.2+0.25=0.45 \mathrm{~mol} \mathrm{OAP} / \mathrm{l}$

