Toxins and Poisons Mechanisms of Action

Lecture for medical students

Prof. MUDr. Sixtus Hynie, DrSc.

Inst. of Medical Biochemistry, 1st Medical Faculty Charles University in Prague

2005

Dose	Poison
mg/kg body weight	
1,000,000	Water
10,000	Alcohol
100	Barbiturates
10	Morphine
1	Nicotine
0.1	Curare
0.01	Tetrodotoxin
< 0.0001	Botulinum toxin

Definitions:

Poisons are chemicals that can injure or impair body functions.

Venoms are substances injected by one species into another.

Toxins are mostly described as drugs produced by microorganisms.

Venoms and toxins are mostly proteins or polypeptides. Many of toxins and poisons are alkaloids (drugs of plant origin).

Toxikology Medical discipline that has many parts:	
	Biochemical
	Pharmacological
	Clinical
	Industrial
	of foodstuff
	Veterinary
	Agriculture
	Military
	Ekotoxicology

Toxins and poisons can have direct and indirect mechanisms of action

Most frequently influenced organs: Liver Kidney Brain Lung, intestine and other

Mechanism of action: Direct damage of tissue Effect on function Genetic defect

Consequences of action of toxic agents

Critical Factors:

Dose / Response

Risk = Hazard x Exposure

Individual sensitivity

Whether damage is reversible or irreversible often depends upon the repair and regenerative ability of the target tissue.

Exposure to neuropoisons may reduce the age at which neurologic and behavioral deficits appear.

Allergic reactions may develop to nearly all drugs.

Allergic reactions are one of the indirect reactions

Toxic effects may also be mediated by:

immunosupression

idiosyncratic reactions

Statistics of acute poisoning

The hazard due to exposure to toxins is regulated by various governmental committees and agencies.

A no-observed-adverse-effect level (NOAEL) can be determined in laboratory animals.

1/100th of this amount is considered acceptable for humans.

This accepts 1 death per milion individuals exposed as the maximum acceptable exposure.

In the USA 20,000 people die each year from the effects of illicit drugs.

Mechanism of action of some venoms and toxins

Toxin

Source

Mechanism

Tetrodotoxin	fish
Cardiac glycosides	toad
Batrachotoxin	frog
Domoic acid	mussels
Cholera toxin	Vibrio cholerae
Pertussis toxin	Bordetella pert.
Tetanus toxin	Clostridium tetani
Botulinum toxin	Clostr. botulinum

	Na ⁺ channel blocker
	ATPase inhibitor
	Na-channel activator
	Activator of glutamate rec.
erae	Activation of Gs proteins
pert.	Inactivation of Gi protein
tetani	Cell membrane ionophore
linum	Inactivation of synaptin for vesicular transport

Poisons from plants		
Poison	Plant	Mechanism of action
Atropine	Atropa bella-donna	M receptor Inhibitor
Cardiac glycosides	Digitalis purpurea	ATPase inhibitor
Capsaicin	Peppers	Depletes P substance
Ricin	Castor bean	Protoplasmic poison
Emetin	Ipeca	Stimulates vomiting center
Curare	Strychnos sps.	Blockade of N receptor
Strychnine	Strychnos sps.	Stimulation of peripheral n.
Cocaine	Koka leaves	Blockade of NT transport

Some fungal toxins: muscarine, psilocybin, aflatoxins, ergot alkaloids etc.

Types of toxic reactions

(pharmacological, pathological, genotoxic – change of DNA)

Phototoxic and photoallergic reactions.Formation of free oxygen radicals.Further mechanisms dependent on the specific type of toxic drugs.

Local or systemic toxicity (most drugs lead to systemic toxicity) Reversible and irreversible effects Chemical cancerogenesis Malformations (teratogenesis) Allergic reactions

Treatment of poisoning

Remove the source of poison Minimize absorption of the poison Supportive therapy (oxygen, ventilation etc.) Specific therapy, if available antivenins antitoxins chelators For drugs: atropine flumazenil opioid antagonists

vitamin K

Toxicology of heavy metals

Heavy metals and their antagonists

Most important: lead, mercury, arsenic, cadmium, iron

Toxic effects are produced by binding to one or more reactive groups, which are essential for normal physiological functions.

Heavy metal antagonists (chelates) were prepared in order to compete with different radicals that are bound by heavy metals; By this mechanism they prevent the toxic effects and increase the excretion of heavy metals.

They react mainly with these groups:

-OH, -COO⁻, -POO₃H⁻, =C=O, -SH, -S-S-, -NH₂, =NH

Metal	Site and mech. of action	Tissue and organ
Mercury	Direct toxicity SH binding and disruption different macromolecules Binds amino & other groups	Corrosive damage of lung, GIT, CNS, kidney
Lead	SH binding, impaired heme synthesis	Damage to CNS, periphera nerves, blood, kidney
Cadmium	Binds to macromolecules and disrupts function	Lung and renal damage
Arsenic	SH groups and uncoupling of oxidative metabolism	Peripheral n. syst., GIT, liver, CV system

Industrial poisoning

Metals (elemental, salts and organic compounds)

Air pollutants and gases

Aromatic and aliphatic hydrocarbons

Insecticides, pesticides and herbicides

All produce acute and chronic toxicity

Mutagenesis and carcinogenesis are particular problems

Industrial poisons

Environmental poisons are those that reach the environment and they can cause acute or chronic poisoning or be carcinogens.

Frequently the concentrations are too low to produce acute intoxication, however, they are sufficient to produce chronic poisoning.

Environmetal toxic agentsAir pollutants Source: Most urban air pollution is due to carbon monoxide, sulfur oxides, hydrocarbons and nitrogen oxides. Photochemical pollution (smog) contains mentioned drugs and photochemical oxidants. Airborne particles account for 10 % of all air pollution. Transport and transformation air, water, soil Exposition and Response of the organism dependent on the properties of toxic drug, biotransformation, depositions, transfer by food Population, response of ecosystem Changes in population (reproduction, mortality etc.)

Particles:	
Fossil fuels, a	shes, carbon particles, asbest etc
Gases:	
Carbon mone	oxide (CO)
Sulfurous ox	$ide(SO_2)$
Nitrogen dio	xide (NO_2)
Aldehydes, g	asoline burning
Metals	-
Ozone	
$Cl^2 + O$	$D_2 \rightarrow C[O^- + O_2]$
$O_2 + pl$	$\rightarrow \Omega_2 + \Omega^2$
$ClO^{-} +$	$0^{-} \rightarrow Cl^{-} + 0$

Symptoms of intoxications

Pupils – miosis, mydriasis (opioids, organophosphates) Odour (arsenic – garlic) Allopecia, hair loss (thallium) Convulsions (strychnine) Paralyses (botulism) Coma (depressants, hypnotics) Skin color changes (CO – cherry red; nitrates – blue) Skin changes (arsenic – hyperkeratosis, blisters) (dioxin – chloracne)

Accidental Food Contamination

Iraq 1972: 5-6,000 people hospitalized, 10% died. Seed grain donated with methyl mercury antifungal agent. Distributed 100,000 tons to farmers, improperly identified. Grain (wheat, barley) mistakenly used to make bread.

<u>Michigan 1973</u>: Nearly 2 million livestock destroyed. Several hundred pounds PBBs mixed with dairy feed. Coverup by company and state officials compounded problem.

Spain 1981: 11,000 people hospitalized, >500 died. Industrial rapeseed oil from France containing aniline refined. Refining process produced toxic components. Resold fraudulently as cooking oil (59 tons) after mixing olive oil.

Adulturation of vegetable oils (soybean/canola in olive) frequent. Biochemical components becoming available for detection.

Most important drugs causing tumors

Smoking	30 per cent
Alcohol	3
Dietary factors	35
Pollution	4
Infection	10

Drug addiction

Stimulating drugs – amphetamines, cocaine

Depressants - opioids, hypnotics

Halucinogens - LSD, marihuana, cannabinoids

Inhalation addictive drugs – chloroform etc.

Lite	rature
Hardn Pl 20	nan J.G. a Limbird L.E.: Goodman and Gilman´s The narmacological Basis of Therapeutics, McGraw-Hill, New York, 001
Amdu Po	r et al.: Casarett and Doull's Toxicology: The Basic Science of bisons, McGraw-Hill, New York, 1991.
Hayes	A.W. (ed.): Principles and Methods of Toxicology, Raven Press 89, New York.
Prokes ek	5 J. et al.: Základy toxikologie, Obecná toxikologie a otoxikologie, Galen, Praha, 2005.
The re	maining literature at the author.